
1

Computer Architecture
(CSC-3501)
Lecture 22

1

Lecture 22
(15 April 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

6.5 Virtual Memory

Cache memory enhances performance by providing
faster memory access speed.
Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.

3

adding main memory.
Instead, a portion of a disk drive serves as an
extension of main memory.
If a system uses paging, virtual memory partitions
main memory into individually managed page frames,
that are written (or paged) to disk when they are not
immediately needed.

CSC3501 - S.J. Park

6.5 Virtual Memory

A physical address is the actual memory address of
physical memory.

Programs create virtual addresses that are mapped
to physical addresses by the memory manager.

4

Page faults occur when a logical address requires
that a page be brought in from disk.

Memory fragmentation occurs when the paging
process results in the creation of small, unusable
clusters of memory addresses.

CSC3501 - S.J. Park

6.5 Virtual Memory

Main memory and virtual memory are divided into
equal sized pages.
The entire address space required by a process
need not be in memory at once. Some parts can be
on disk, while others are in main memory.

5

on disk, while others are in main memory.
Further, the pages allocated to a process do not
need to be stored contiguously-- either on disk or in
memory.
In this way, only the needed pages are in memory
at any time, the unnecessary pages are in slower
disk storage.

CSC3501 - S.J. Park

6.5 Virtual Memory

Information concerning the location of each page,
whether on disk or in memory, is maintained in a data
structure called a page table (shown below).
There is one page table for each active process.

6

2

CSC3501 - S.J. Park

6.5 Virtual Memory

When a process generates a virtual address, the
operating system translates it into a physical memory
address.
To accomplish this, the virtual address is divided into
two fields: A page field, and an offset field.

7

two fields: A page field, and an offset field.
The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.
The logical page number is translated into a physical
page frame through a lookup in the page table.

CSC3501 - S.J. Park

6.5 Virtual Memory

If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in
memory and must be fetched from disk.

This is a page fault.
If necessary, a page is evicted from memory and is

8

y p g y
replaced by the page retrieved from disk, and the valid
bit is set to 1.

If the valid bit is 1, the virtual page number is replaced
by the physical frame number.
The data is then accessed by adding the offset to the
physical frame number.

CSC3501 - S.J. Park

6.5 Virtual Memory

As an example, suppose a system has a virtual address
space of 8K and a physical address space of 4K, and the
system uses byte addressing.

We have 213/210 = 23 virtual pages.
A virtual address has 13 bits (8K = 213) with 3 bits for the page

9

field and 10 for the offset, because the page size is 1024.
A physical memory address requires 12 bits, the first two bits
for the page frame and the trailing 10 bits the offset.

CSC3501 - S.J. Park

6.5 Virtual Memory

Suppose we have the page table shown below.
What happens when CPU generates address 545910
= 10101010100112?

10

CSC3501 - S.J. Park

6.5 Virtual Memory

The address 10101010100112 is converted to
physical address 010101010011 because the page
field 101 is replaced by frame number 01 through a
lookup in the page table.

11

CSC3501 - S.J. Park

6.5 Virtual Memory

What happens when the CPU generates address
10000000001002?

12

3

CSC3501 - S.J. Park

6.5 Virtual Memory

We said earlier that effective access time (EAT) takes
all levels of memory into consideration.
Thus, virtual memory is also a factor in the
calculation, and we also have to consider page table
access time

13

access time.
Suppose a main memory access takes 200ns, the
page fault rate is 1%, and it takes 10ms to load a
page from disk. We have:

EAT = 0.99(200ns + 200ns) 0.01(10ms) = 100, 396ns.

CSC3501 - S.J. Park

6.5 Virtual Memory

Even if we had no page faults, the EAT would be
400ns because memory is always read twice: First to
access the page table, and second to load the page
from memory.
Because page tables are read constantly it makes

14

Because page tables are read constantly, it makes
sense to keep them in a special cache called a
translation look-aside buffer (TLB).
TLBs are a special associative cache that stores the
mapping of virtual pages to physical pages.

The next slide shows how all the pieces fit toget
her.

CSC3501 - S.J. Park

6.5 Virtual Memory

15

CSC3501 - S.J. Park

6.5 Virtual Memory

Another approach to virtual memory is the use of
segmentation.
Instead of dividing memory into equal-sized pages,
virtual address space is divided into variable-length
segments, often under the control of the programmer.

16

segments, often under the control of the programmer.
A segment is located through its entry in a segment
table, which contains the segment’s memory location
and a bounds limit that indicates its size.
After a page fault, the operating system searches for
a location in memory large enough to hold the
segment that is retrieved from disk.

CSC3501 - S.J. Park

6.5 Virtual Memory

Both paging and segmentation can cause
fragmentation.
Paging is subject to internal fragmentation because a
process may not need the entire range of addresses
contained within the page Thus there may be many

17

contained within the page. Thus, there may be many
pages containing unused fragments of memory.
Segmentation is subject to external fragmentation,
which occurs when contiguous chunks of memory
become broken up as segments are allocated and
deallocated over time.

CSC3501 - S.J. Park

6.5 Virtual Memory

Large page tables are cumbersome and slow, but with
its uniform memory mapping, page operations are
fast. Segmentation allows fast access to the segment
table, but segment loading is labor-intensive.
Paging and segmentation can be combined to take

18

Paging and segmentation can be combined to take
advantage of the best features of both by assigning
fixed-size pages within variable-sized segments.
Each segment has a page table. This means that a
memory address will have three fields, one for the
segment, another for the page, and a third for the
offset.

4

CSC3501 - S.J. Park

6.6 A Real-World Example

The Pentium architecture supports both paging and
segmentation, and they can be used in various
combinations including unpaged unsegmented,
segmented unpaged, and unsegmented paged.
The processor supports two levels of cache (L1 and

19

The processor supports two levels of cache (L1 and
L2), both having a block size of 32 bytes.
The L1 cache is next to the processor, and the L2
cache sits between the processor and memory.
The L1 cache is in two parts: and instruction cache (I-
cache) and a data cache (D-cache).

The next slide shows this organization schematically.

CSC3501 - S.J. Park

6.6 A Real-World Example

20

