

7.7 Optical Disks

 Optical disks provide large storage capacities very inexpensively.

CSC3501 - S.J. Park

CSC3501 - S.J. Park

- They come in a number of varieties including CD-ROM, DVD, and WORM.
- Many large computer installations produce document output on optical disk rather than on paper. This idea is called COLD-- Computer Output Laser Disk.
- It is estimated that optical disks can endure for a hundred years. Other media are good for only a decade-- at best.
- з

7.7 Optical Disks

• CD-ROMs were designed by the music industry in the 1980s, and later adapted to data.

CSC3501 - S.J. Park

CSC3501 - S.J. Park

- This history is reflected by the fact that data is recorded in a single spiral track, starting from the center of the disk and spanning outward.
- Binary ones and zeros are delineated by bumps in the polycarbonate disk substrate. The transitions between pits and lands define binary ones.
- If you could unravel a full CD-ROM track, it would be nearly five miles long!

7.7 Optical Disks

- The logical data format for a CD-ROM is much more complex than that of a magnetic disk. (See the text for details.)
- Different formats are provided for data and music.
- Two levels of error correction are provided for the data format.
- Because of this, a CD holds at most 650MB of data, but can contain as much as 742MB of music.

7.7 Optical Disks

- DVDs can be thought of as quad-density CDs.
 Varieties include single sided, single layer, single sided double layer, double sided double layer, and double sided double layer.
- Where a CD-ROM can hold at most 650MB of data, DVDs can hold as much as 17GB.
- One of the reasons for this is that DVD employs a laser that has a shorter wavelength than the CD's laser.
- This allows pits and land to be closer together and the spiral track to be wound tighter.

ŝ

7.7 Optical Disks

- Blu-Ray was developed by a consortium of nine companies that includes Sony, Samsung, and Pioneer.
 - Maximum capacity of a single layer Blu-Ray disk is 25GB.

CSC3501 - S.J. Park

CSC3501 - S.J. Park

- HD-DVD was developed under the auspices of the DVD Forum with NEC and Toshiba leading the effort.
 Maximum capacity of a single layer HD-DVD is 15GB.
- The big difference between the two is that HD-DVD is backward compatible with red laser DVDs, and Blu-Ray is not.

10

- RAID, an acronym for Redundant Array of Independent Disks was invented to address problems of disk reliability, cost, and performance.
- In RAID, data is stored across many disks, with extra disks added to the array to provide error correction (redundancy).
- The inventors of RAID, David Patterson, Garth Gibson, and Randy Katz, provided a RAID taxonomy that has persisted for a quarter of a century, despite many efforts to redefine it.

7.9 RAID

• Like RAID 6, RAID DP can tolerate the loss of two disks.

CSC3501 - S.J. Park

- The use of simple parity functions provides RAID DP with better performance than RAID 6.
- Of course, because two parity functions are involved, RAID DP's performance is somewhat degraded from that of RAID 5.
 - RAID DP is also known as EVENODD, diagonal parity RAID, RAID 5DP, advanced data guarding RAID (RAID ADG) and-- erroneously-- RAID 6.
- 19

7.9 RAID

- Large systems consisting of many drive arrays may employ various RAID levels, depending on the criticality of the data on the drives.
 - A disk array that provides program workspace (say for file sorting) does not require high fault tolerance.

CSC3501 - S.J. Park

CSC3501 - S.J. Park

CSC3501 - S.J. Park

- Critical, high-throughput files can benefit from combining RAID 0 with RAID 1, called RAID 10.
- Keep in mind that a higher RAID level does not necessarily mean a "better" RAID level. It all depends upon the needs of the applications that use the disks.

20

22

24

Advances in technology have defied all efforts to define the ultimate upper limit for magnetic disk storage. In the 1970s, the upper limit was thought to be around 2Mb/in². Today's disks commonly support 20Gb/in². Improvements have occurred in several different technologies including: Materials science Magneto-optical recording heads.

- Error correcting codes.
- 21

7.10 The Future of Data Storage

- As data densities increase, bit cells consist of proportionately fewer magnetic grains.
- There is a point at which there are too few grains to hold a value, and a 1 might spontaneously change to a 0, or vice versa.
- This point is called the superparamagnetic limit.
 In 2006, the superparamagnetic limit is thought to lie between 150Gb/in² and 200Gb/in².
- Even if this limit is wrong by a few orders of magnitude, the greatest gains in magnetic storage have probably already been realized.

CSC3501 - S.J. Park 7.10 The Future of Data Storage

- Future exponential gains in data storage most likely will occur through the use of totally new technologies.
- Research into finding suitable replacements for magnetic disks is taking place on several fronts.
- Some of the more interesting technologies include:
 - Biological materials
 - Holographic systems and
 - □ Micro-electro-mechanical devices.
- 23

7.10 The Future of Data Storage

- Present day biological data storage systems combine organic compounds such as proteins or oils with inorganic (magentizable) substances.
- Early prototypes have encouraged the expectation that densities of 1Tb/in² are attainable.
- Of course, the ultimate biological data storage medium is DNA.
- Trillions of messages can be stored in a tiny strand of DNA.
- Practical DNA-based data storage is most likely decades away.

Micro-electro-mechanical storage (MEMS) devices offer another promising approach to mass storage. IBM's Millipede is one such device. Prototypes have achieved densities of 100Gb/in² with 1Tb/in² expected as the technology is refined.

A photomicrograph of Millipede is shown on the next sli de.

25

Millipede consists of thousands of cantilevers that record a binary 1 by pressing a heated tip into a polymer substrate. The tip reads a bin ary 1 when it dips i nto the imprint in th e polymer Photomicrograph courtes y of the IBM Corporation. E 2005 IBM Corporation.

Chapter 7 Conclusion

28

Magnetic disk is the principal form of durable storage.

CSC3501 - S.J. Park

- Disk performance metrics include seek time, rotational delay, and reliability estimates.
- Optical disks provide long-term storage for large amounts of data, although access is slow.
- Magnetic tape is also an archival medium. Recording methods are track-based, serpentine, and helical scan.

