
1

Computer Architecture
(CSC-3501)
Lecture 25

1

Lecture 25
(24 April 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

Chapter 9 Objectives

Learn the properties that often distinguish RISC
from CISC architectures.
Understand how multiprocessor architectures are
classified.
A i t th f t th t t l it i

3

Appreciate the factors that create complexity in
multiprocessor systems.
Become familiar with the ways in which some
architectures transcend the traditional von
Neumann paradigm.

CSC3501 - S.J. Park

9.1 Introduction

We have so far studied only the simplest models of
computer systems; classical single-processor von
Neumann systems.

This chapter presents a number of different
approaches to computer organization and

4

approaches to computer organization and
architecture.

Some of these approaches are in place in today’s
commercial systems. Others may form the basis for
the computers of tomorrow.

CSC3501 - S.J. Park

9.2 RISC Machines

The underlying philosophy of RISC machines is that
a system is better able to manage program
execution when the program consists of only a few
different instructions that are the same length and
require the same number of clock cycles to decode

5

q y
and execute.
RISC systems access memory only with explicit load
and store instructions.
In CISC systems, many different kinds of instructions
access memory, making instruction length variable
and fetch-decode-execute time unpredictable.

CSC3501 - S.J. Park

9.2 RISC Machines

The difference between CISC and RISC becomes
evident through the basic computer performance
equation:

6

RISC systems shorten execution time by reducing
the clock cycles per instruction.

CISC systems improve performance by reducing the
number of instructions per program.

2

CSC3501 - S.J. Park

9.2 RISC Machines

The simple instruction set of RISC machines
enables control units to be hardwired for maximum
speed.

The more complex-- and variable-- instruction set of
CISC machines requires microcode based control

7

CISC machines requires microcode-based control
units that interpret instructions as they are fetched
from memory. This translation takes time.

With fixed-length instructions, RISC lends itself to
pipelining and speculative execution.

CSC3501 - S.J. Park

mov ax, 0
mov bx, 10
mov cx, 5

Begin add ax, bx
loop Begin

9.2 RISC Machines

Consider the the program fragments:

Th t t l l k l f th CISC i i ht b

mov ax, 10
mov bx, 5
mul bx, ax

CISC RISC

8

The total clock cycles for the CISC version might be:
(2 movs × 1 cycle) + (1 mul × 30 cycles) = 32 cycles

While the clock cycles for the RISC version is:
(3 movs × 1 cycle) + (5 adds × 1 cycle) + (5 loops ×
1 cycle) = 13 cycles

With RISC clock cycle being shorter, RISC gives us
much faster execution speeds.

CSC3501 - S.J. Park

9.2 RISC Machines

Because of their load-store ISAs, RISC architectures
require a large number of CPU registers.

These register provide fast access to data during
sequential program execution.

9

They can also be employed to reduce the overhead
typically caused by passing parameters to
subprograms.

Instead of pulling parameters off of a stack, the
subprogram is directed to use a subset of registers.

CSC3501 - S.J. Park

9.2 RISC Machines

It is becoming increasingly difficult to
distinguish RISC architectures from CISC
architectures.

Some RISC systems provide more extravagant
instruction sets than some CISC systems

10

instruction sets than some CISC systems.

Some systems combine both approaches.

The following two slides summarize the
characteristics that traditionally typify the
differences between these two architectures.

CSC3501 - S.J. Park

RISC
Multiple register sets.
Three operands per
instruction.
Parameter passing

CISC
Single register set.
One or two register
operands per
instruction.

9.2 RISC Machines

11

through register
windows.
Single-cycle
instructions.
Hardwired
control.
Highly pipelined.

Parameter passing
through memory.
Multiple cycle
instructions.
Microprogrammed
control.
Less pipelined.

Continued....

CSC3501 - S.J. Park

RISC
Simple instructions,
few in number.
Fixed length
instructions.

CISC
Many complex
instructions.
Variable length
instructions.

9.2 RISC Machines

12

Complexity in
compiler.
Only LOAD/STORE
instructions access
memory.
Few addressing
modes.

Complexity in
microcode.
Many instructions
can access memory.

Many addressing
modes.

3

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomy

Many attempts have been made to come up with a
way to categorize computer architectures.

Flynn’s Taxonomy has been the most enduring of
these, despite having some limitations.

13

Flynn’s Taxonomy takes into consideration the
number of processors and the number of data paths
incorporated into an architecture.

A machine can have one or many processors that
operate on one or many data streams.

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomy

The four combinations of multiple processors and
multiple data paths are described by Flynn as:

14

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomy

Flynn’s Taxonomy falls short in a number of ways:
First, there appears to be no need for MISD
machines.
Second, parallelism is not homogeneous. This
assumption ignores the contribution of specialized

15

assumption ignores the contribution of specialized
processors.
Third, it provides no straightforward way to
distinguish architectures of the MIMD category.

One idea is to divide these systems into those that share
memory, and those that don’t, as well as whether the
interconnections are bus-based or switch-based.

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomy

Symmetric multiprocessors (SMP) and massively
parallel processors (MPP) are MIMD
architectures that differ in how they use memory.
SMP systems share the same memory and MPP
do not

16

do not.
An easy way to distinguish SMP from MPP is:
MPP ⇒ many processors + distributed memory +

communication via network

SMP ⇒ fewer processors + shared memory +
communication via memory

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomyh

Other examples of MIMD architectures are found in
distributed computing, where processing takes place
collaboratively among networked computers.

A network of workstations (NOW) uses otherwise idle
systems to solve a problem.

17

A collection of workstations (COW) is a NOW where one
workstation coordinates the actions of the others.

A dedicated cluster parallel computer (DCPC) is a group of
workstations brought together to solve a specific problem.

A pile of PCs (POPC) is a cluster of (usually) heterogeneous
systems that form a dedicated parallel system.

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomy

Flynn’s Taxonomy has been expanded to include
SPMD (single program, multiple data) architectures.

Each SPMD processor has its own data set and
program memory. Different nodes can execute
different instructions within the same program using

18

different instructions within the same program using
instructions similar to:

If myNodeNum = 1 do this, else do that

Yet another idea missing from Flynn’s is whether the
architecture is instruction driven or data driven.

The next slide provides a revised taxono
my.

4

CSC3501 - S.J. Park

9.3 Flynn’s Taxonomy

19

CSC3501 - S.J. Park

Current Supercomputer 500

20

CSC3501 - S.J. Park

BlueGene (1)
The BlueGene/L custom processor chip.

CSC3501 - S.J. Park

BlueGene (2)
The BlueGene/L. (a) Chip. (b) Card. (c) Board.

(d) Cabinet. (e) System.

CSC3501 - S.J. Park

A Growth of High Performance Computing

1949
1976

Cray 1
1996
T3E

1991
Intel Delta

2003
Cray X1

1959
IBM 7094

By Thomas Sterling - Caltech & JPL 23

1 103 106 109 1012 1015

KiloOPS MegaOPS GigaOPS TeraOPS PetaOPSOne OPS

1951
Univac 1

Edsac

1982
Cray XMP

1988
Cray YMP

1964
CDC 6600

1823
Babbage Difference

Engine

1997
ASCI Red

2001
Earth Simu

lator
1943

Harvard M
ark 1

CSC3501 - S.J. Park

9.4 Parallel and Multiprocessor Architectures

Parallel processing is capable of economically
increasing system throughput while providing better
fault tolerance.
The limiting factor is that no matter how well an
algorithm is parallelized, there is always some

24

g p , y
portion that must be done sequentially.

Additional processors sit idle while the sequential work is
performed.

Thus, it is important to keep in mind that an n -fold
increase in processing power does not necessarily
result in an n -fold increase in throughput.

5

CSC3501 - S.J. Park

9.4 Superpipelining
Recall that pipelining divides the fetch-decode-execute cycle
into stages that each carry out a small part of the process on a
set of instructions.
Ideally, an instruction exits the pipeline during each tick of the
clock.
Superpipelining occurs when a pipeline has stages that require
less than half a clock cycle to complete.

The pipeline is equipped with a separate clock running at a
f th t i t l t d bl th t f th i t l k

25

frequency that is at least double that of the main system clock.
Superpipelining is only one aspect of superscalar design.

CSC3501 - S.J. Park

9.4 Superscalar (Dynamic multiple-issue processors)
Superscalar architectures include multiple execution units such as
specialized integer and floating-point adders and multipliers.
A critical component of this architecture is the instruction fetch
unit, which can simultaneously retrieve several instructions from
memory.
A decoding unit determines which of these instructions can be
executed in parallel and combines them accordingly.
Thi hit t l i il th t k ti

26

This architecture also requires compilers that make optimum use
of the hardware.

CSC3501 - S.J. Park

Pentium 4 Block Diagram

27

CSC3501 - S.J. Park

9.4 VLIW (Static multiple-issue processors)
Very long instruction word (VLIW) architectures differ
from superscalar architectures because the VLIW
compiler, instead of a hardware decoding unit, packs
independent instructions into one long instruction that is
sent down the pipeline to the execution units.

Compiler takes greater responsibility for exploiting parallelism

One could argue that this is the best approach because

28

One could argue that this is the best approach because
the compiler can better identify instruction dependencies.
However, compilers tend to be conservative and cannot
have a view of the run time code.

E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit Parallel Instruction
Computer)

CSC3501 - S.J. Park

Example of VLIW - IA-64

CompilerCompiler

Original SourceOriginal Source
CodeCode

CompileCompile

Parallel MachineParallel Machine
CodeCode

HardwareHardware multiple functional unitsmultiple functional units

29

Instruction 2Instruction 2
41 bits41 bits

Instruction 1Instruction 1
41 bits41 bits

Instruction 0Instruction 0
41 bits41 bits

TemplateTemplate
5 bits5 bits

128 bits (bundle)128 bits (bundle)

(MMI)(MMI)Memory (M)Memory (M) Memory (M)Memory (M) Integer (I)Integer (I)

IAIA--64 Compiler 64 Compiler
Views Views WiderWider

ScopeScope
...

...
...

...
More efficient use of More efficient use of
execution resourcesexecution resources

CSC3501 - S.J. Park

CISC vs RISC vs SS vs VLIW
CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size (but
large)

Instr format variable
format

fixed format fixed format fixed format

Registers few, some many GP GP and many, many
special rename (RUU) GP

Memory
reference

embedded in
many instr’s

load/store load/store load/store

Key Issues decode
complexity

data
forwarding,
hazards

hardware
dependency
resolution

(compiler)
code
scheduling

Instruction
flow

IF ID EX M WB

IF ID EX M WB
EX M WB

IF ID EX M WB IF ID EX M WB
EX M WBIF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

