
1

Computer Architecture 
(CSC-3501)
Lecture 25

1

Lecture 25
(24 April 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

Chapter 9 Objectives

Learn the properties that often distinguish RISC 
from CISC architectures.
Understand how multiprocessor architectures are 
classified.
A i t th f t th t t l it i
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Appreciate the factors that create complexity in 
multiprocessor systems.
Become familiar with the ways in which some 
architectures transcend the traditional von 
Neumann paradigm.
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9.1 Introduction

We have so far studied only the simplest models of 
computer systems; classical single-processor von 
Neumann systems.

This chapter presents a number of different 
approaches to computer organization and
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approaches to computer organization and 
architecture.

Some of these approaches are in place in today’s 
commercial systems.  Others may form the basis for 
the computers of tomorrow.
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9.2 RISC Machines

The underlying philosophy of RISC machines is that 
a system is better able to manage program 
execution when the program consists of only a few 
different instructions that are the same length and 
require the same number of clock cycles to decode 
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and execute.
RISC systems access memory only with explicit load 
and store instructions.
In CISC systems, many different kinds of instructions 
access memory, making instruction length variable 
and fetch-decode-execute time unpredictable. 
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9.2 RISC Machines

The difference between CISC and RISC becomes 
evident through the basic computer performance 
equation:
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RISC systems shorten execution time by reducing 
the clock cycles per instruction.

CISC systems improve performance by reducing the 
number of instructions per program.
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9.2 RISC Machines

The simple instruction set of RISC machines 
enables control units to be hardwired for maximum 
speed.

The more complex-- and variable-- instruction set of 
CISC machines requires microcode based control

7

CISC machines requires microcode-based control 
units that interpret instructions as they are fetched 
from memory.  This translation takes time.

With fixed-length instructions, RISC lends itself to 
pipelining and speculative execution.
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mov ax, 0
mov bx, 10
mov cx, 5

Begin  add ax, bx
loop Begin

9.2 RISC Machines

Consider the the program fragments:

Th t t l l k l f th CISC i i ht b

mov ax, 10
mov bx, 5
mul bx, ax

CISC RISC
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The total clock cycles for the CISC version might be:
(2 movs × 1 cycle) + (1 mul × 30 cycles) = 32 cycles

While the clock cycles for the RISC version is:
(3 movs × 1 cycle) + (5 adds × 1 cycle) + (5 loops ×
1 cycle) = 13 cycles

With RISC clock cycle being shorter, RISC gives us 
much faster execution speeds.
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9.2 RISC Machines

Because of their load-store ISAs, RISC architectures 
require a large number of CPU registers.

These register provide fast access to data during 
sequential program execution.
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They can also be employed to reduce the overhead 
typically caused by passing parameters to 
subprograms.

Instead of pulling parameters off of a stack, the 
subprogram is directed to use a subset of registers.
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9.2 RISC Machines

It is becoming increasingly difficult to 
distinguish RISC architectures from CISC 
architectures.

Some RISC systems provide more extravagant 
instruction sets than some CISC systems

10

instruction sets than some CISC systems.

Some systems combine both approaches.

The following two slides summarize the 
characteristics that traditionally typify the 
differences between these two architectures.
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RISC
Multiple register sets.
Three operands per 
instruction.
Parameter passing 

CISC
Single register set.
One or two register 
operands per 
instruction.

9.2 RISC Machines
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through register 
windows.
Single-cycle 
instructions.
Hardwired 
control.
Highly pipelined.

Parameter passing 
through memory.
Multiple cycle 
instructions.
Microprogrammed 
control.
Less pipelined.

Continued.... 
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RISC
Simple instructions, 
few in number.
Fixed length 
instructions.

CISC
Many complex 
instructions.
Variable length 
instructions.

9.2 RISC Machines
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Complexity in 
compiler.
Only LOAD/STORE
instructions access 
memory.
Few addressing 
modes.

Complexity in 
microcode.
Many instructions 
can access memory.

Many addressing 
modes.
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9.3 Flynn’s Taxonomy

Many attempts have been made to come up with a 
way to categorize computer architectures.

Flynn’s Taxonomy has been the most enduring of 
these, despite having some limitations.
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Flynn’s Taxonomy takes into consideration the 
number of processors and the number of data paths 
incorporated into an architecture.

A machine can have one or many processors that 
operate on one or many data streams.
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9.3 Flynn’s Taxonomy

The four combinations of multiple processors and 
multiple data paths are described by Flynn as:
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9.3 Flynn’s Taxonomy

Flynn’s Taxonomy falls short in a number of ways:
First, there appears to be no need for MISD 
machines.
Second, parallelism is not homogeneous.  This 
assumption ignores the contribution of specialized
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assumption ignores the contribution of specialized 
processors.
Third, it provides no straightforward way to 
distinguish architectures of the MIMD category.

One idea is to divide these systems into those that share 
memory, and those that don’t, as well as whether the 
interconnections are bus-based or switch-based.
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9.3 Flynn’s Taxonomy

Symmetric multiprocessors (SMP) and massively 
parallel processors (MPP) are MIMD 
architectures that differ in how they use memory.
SMP systems share the same memory and MPP 
do not
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do not.
An easy way to distinguish SMP from MPP is:
MPP ⇒ many processors + distributed memory + 

communication via network

SMP ⇒ fewer processors + shared memory +       
communication via memory
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9.3 Flynn’s Taxonomyh

Other examples of MIMD architectures are found in 
distributed computing, where processing takes place 
collaboratively among networked computers.

A network of workstations (NOW) uses otherwise idle 
systems to solve a problem.
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A collection of workstations (COW) is a NOW where one 
workstation coordinates the actions of the others.

A dedicated cluster parallel computer (DCPC) is a group of 
workstations brought together to solve a specific problem.

A pile of PCs (POPC) is a cluster of (usually) heterogeneous 
systems that form a dedicated parallel system.
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9.3 Flynn’s Taxonomy

Flynn’s Taxonomy has been expanded to include 
SPMD (single program, multiple data) architectures.

Each SPMD processor has its own data set and 
program memory. Different nodes can execute 
different instructions within the same program using

18

different instructions within the same program using 
instructions similar to:

If myNodeNum = 1 do this, else do that

Yet another idea missing from Flynn’s is whether the 
architecture is instruction driven or data driven. 

The next slide provides a revised taxono
my. 
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9.3 Flynn’s Taxonomy
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Current Supercomputer 500
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BlueGene (1)
The BlueGene/L custom processor chip.
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BlueGene (2)
The BlueGene/L. (a) Chip.  (b) Card.  (c) Board. 

(d) Cabinet.  (e) System.
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A Growth of High Performance Computing
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9.4 Parallel and Multiprocessor Architectures

Parallel processing is capable of economically 
increasing system throughput while providing better 
fault tolerance.
The limiting factor is that no matter how well an 
algorithm is parallelized, there is always some 
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portion that must be done sequentially.

Additional processors sit idle while the sequential work is 
performed.

Thus, it is important to keep in mind that an n -fold 
increase in processing power does not necessarily 
result in an n -fold increase in throughput.
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9.4 Superpipelining
Recall that pipelining divides the fetch-decode-execute cycle 
into stages that each carry out a small part of the process on a 
set of instructions.
Ideally, an instruction exits the pipeline during each tick of the 
clock.
Superpipelining occurs when a pipeline has stages that require 
less than half a clock cycle to complete.

The pipeline is equipped with a separate clock running at a 
f th t i t l t d bl th t f th i t l k
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frequency that is at least double that of the main system clock.
Superpipelining is only one aspect of superscalar design.
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9.4 Superscalar (Dynamic multiple-issue processors )
Superscalar architectures include multiple execution units such as 
specialized integer and floating-point adders and multipliers.
A critical component of this architecture is the instruction fetch 
unit, which can simultaneously retrieve several instructions from 
memory.
A decoding unit determines which of these instructions can be 
executed in parallel and combines them accordingly.
Thi hit t l i il th t k ti
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This architecture also requires compilers that make optimum use 
of the hardware.
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Pentium 4 Block Diagram
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9.4 VLIW (Static multiple-issue processors)
Very long instruction word (VLIW) architectures differ 
from superscalar architectures because the VLIW 
compiler, instead of a hardware decoding unit, packs 
independent instructions into one long instruction that is 
sent down the pipeline to the execution units.

Compiler takes greater responsibility for exploiting parallelism

One could argue that this is the best approach because
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One could argue that this is the best approach because 
the compiler can better identify instruction dependencies.
However, compilers tend to be conservative and cannot 
have a view of the run time code.

E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit Parallel Instruction 
Computer)
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Example of VLIW - IA-64

CompilerCompiler

Original SourceOriginal Source
CodeCode

CompileCompile

Parallel MachineParallel Machine
CodeCode

HardwareHardware multiple functional unitsmultiple functional units
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Instruction 2Instruction 2
41 bits41 bits

Instruction 1Instruction 1
41 bits41 bits

Instruction 0Instruction 0
41 bits41 bits

TemplateTemplate
5 bits5 bits

128 bits (bundle)128 bits (bundle)

(MMI)(MMI)Memory (M)Memory (M) Memory (M)Memory (M) Integer (I)Integer (I)

IAIA--64 Compiler 64 Compiler 
Views Views WiderWider

ScopeScope
...

...
...

...
More efficient use of More efficient use of 
execution resourcesexecution resources
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CISC vs RISC vs SS vs VLIW
CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size (but 
large)

Instr format variable 
format

fixed format fixed format fixed format

Registers few, some many GP GP and many, many 
special rename (RUU) GP

Memory 
reference

embedded in 
many instr’s

load/store load/store load/store

Key Issues decode 
complexity

data 
forwarding, 
hazards

hardware 
dependency 
resolution

(compiler) 
code 
scheduling

Instruction 
flow

IF ID EX M WB

IF ID EX M WB
EX M WB

IF ID EX M WB IF ID EX M WB
EX M WBIF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB


