
1

Computer Architecture
(CSC-3501)
Lecture 27

1

Lecture 27
(1 May 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

Chapter 11 Objectives

Understand the ways in which computer
performance is measured.

Be able to describe common benchmarks and

3

their limitations.

Become familiar with factors that contribute to
improvements in CPU and disk performance.

CSC3501 - S.J. Park

11.1 Introduction

The ideas presented in this chapter will help you
to understand various measurements of computer
performance.

You will be able to use these ideas when you are
h i l t t i t i

4

purchasing a large system, or trying to improve
the performance of an existing system.

We will discuss a number of factors that affect
system performance, including some tips that you
can use to improve the performance of programs.

CSC3501 - S.J. Park

11.2 The Basic Computer Performance Equation

The basic computer performance equation has
been useful in our discussions of RISC versus
CISC:

5

To achieve better performance, RISC machines
reduce the number of cycles per instruction, and
CISC machines reduce the number of instructions
per program.

CSC3501 - S.J. Park

11.2 The Basic Computer Performance Equation

In short, using Amdahl’s Law we know that we need
to make the common case fast.

So if our system is CPU bound, we want to make
the CPU faster.
A b d t ll f i t i

6

A memory bound system calls for improvements in
memory management.
The performance of an I/O bound system will
improve with an upgrade to the I/O system.

Of course, fixing a performance problem in one part of the sy
stem can expose a weakness in another part of the system!

2

CSC3501 - S.J. Park

11.2 The Basic Computer Performance Equation

We have also learned that CPU efficiency is not the
sole factor in overall system performance. Memory
and I/O performance are also important.

Amdahl’s Law tells us that the system performance
gain realized from the speedup of one component

7

gain realized from the speedup of one component
depends not only on the speedup of the component
itself, but also on the fraction of work done by the
component:

CSC3501 - S.J. Park

Amdahl’s Law

ExTimenew = ExTimeold x (1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

8

Speedupoverall =
ExTimeold

ExTimenew

=
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

CSC3501 - S.J. Park

11.3 Mathematical Preliminaries

In comparing the performance of two systems, we
measure the time that it takes for each system to do
the same amount of work.
Specifically, if System A and System B run the
same program System A is n times as fast as

9

same program, System A is n times as fast as
System B if:

System A is x% faster than System B if:

CSC3501 - S.J. Park

11.3 Mathematical Preliminaries

Suppose we have two racecars that have just completed
a 10 mile race. Car A finished in 3 minutes, and Car B
finished in 4 minutes. Using our formulas, Car A is 1.25
times as fast as Car B, and Car A is also 25% faster than
Car B:

10

CSC3501 - S.J. Park

11.3 Mathematical Preliminaries

When we are evaluating system performance we
are most interested in its expected performance
under a given workload.
We use statistical tools that are measures of central
tendency.

11

tendency.
The one with which everyone is most familiar is the
arithmetic mean (or average), given by:

CSC3501 - S.J. Park

11.3 Mathematical Preliminaries

The arithmetic mean can be misleading if the data
are skewed or scattered.

Consider the execution times given in the table below.
The performance differences are hidden by the simple
average.

12

3

CSC3501 - S.J. Park

11.3 Mathematical Preliminaries

If execution frequencies (expected workloads) are
known, a weighted average can be revealing.

The weighted average for System A is:
50 × 0.5 + 200 × 0.3 + 250 × 0.1 + 400 × 0.05 + 5000 × 0.05 =

380.

13

CSC3501 - S.J. Park

11.3 Mathematical Preliminaries

However, workloads can change over time.
A system optimized for one workload may perform poorly
when the workload changes, as illustrated below.

14

CSC3501 - S.J. Park

11.4 Benchmarking

Performance benchmarking is the science of making
objective assessments concerning the performance of
one system over another.
Price-performance ratios can be derived from
standard benchmarks

15

standard benchmarks.
The troublesome issue is that there is no definitive
benchmark that can tell you which system will run
your applications the fastest (using the least wall
clock time) for the least amount of money.

CSC3501 - S.J. Park

11.4 Benchmarking

Many people erroneously equate CPU speed with
performance.
Measures of CPU speed include cycle time (MHz,
and GHz) and millions of instructions per second
(MIPS).

16

()
Saying that System A is faster than System B
because System A runs at 1.4GHz and System B
runs at 900MHz is valid only when the ISAs of
Systems A and B are identical.

With different ISAs, it is possible that both of these
systems could obtain identical results within the same
amount of wall clock time.

CSC3501 - S.J. Park

11.4 Benchmarking

In an effort to describe performance independent of
clock speed and ISAs, a number of synthetic
benchmarks have been attempted over the years.
Synthetic benchmarks are programs that serve no
purpose except to produce performance numbers.

17

p p p p p
The earliest synthetic benchmarks, Whetstone,
Dhrystone, and Linpack (to name only a few) were
relatively small programs that were easy to optimize.

This fact limited their usefulness from the outset.
These programs are much too small to be useful in
evaluating the performance of today’s systems.

CSC3501 - S.J. Park

11.4 Benchmarking

In 1988 the Standard Performance Evaluation
Corporation (SPEC) was formed to address the
need for objective benchmarks.
SPEC produces benchmark suites for various
classes of computers and computer applications.

18

p p pp
Their most widely known benchmark suite is the
SPEC CPU benchmark.
The SPEC CPU2000 benchmark consists of two
parts, CINT2000, which measures integer arithmetic
operations, and CFP2000, which measures floating-
point processing.

4

CSC3501 - S.J. Park

11.4 Benchmarking

The SPEC benchmarks consist of a collection of
kernel programs.
These are programs that carry out the core
processes involved in solving a particular problem.

Activities that do not contribute to solving the

19

Activities that do not contribute to solving the
problem, such as I/O are removed.

CINT2000 consists of 12 applications (11 written in
C and one in C++); CFP2000 consists of 14
applications (6 FORTRAN 77, 4 FORTRAN 90,
and 4 C).

A list of these programs can be found in Table 10.7 on Pages 467 - 468.

CSC3501 - S.J. Park

11.4 Benchmarking

On most systems, more than two 24 hour days are
required to run the SPEC CPU2000 benchmark suite.
Upon completion, the execution time for each kernel
(as reported by the benchmark suite) is divided by
the run time for the same kernel on a Sun Ultra 10.

20

the run time for the same kernel on a Sun Ultra 10.
The final result is the geometric mean of all of the run
times.
Manufacturers may report two sets of numbers: The
peak and base numbers are the results with and
without compiler optimization flags, respectively.

CSC3501 - S.J. Park

11.4 Benchmarking

The SPEC CPU benchmark evaluates only CPU
performance.
When the performance of the entire system under
high transaction loads is a greater concern, the
Transaction Performance Council (TPC) benchmarks
are more suitable

21

are more suitable.
The current version of this suite is the TPC-C
benchmark.
TPC-C models the transactions typical of a
warehousing and distribution business using terminal
emulation software.

CSC3501 - S.J. Park

11.4 Benchmarking

The TPC-C metric is the number of new
warehouse order transactions per minute (tpmC),
while a mix of other transactions is concurrently
running on the system.
The tpmC result is divided by the total cost of the

22

The tpmC result is divided by the total cost of the
configuration tested to give a price-performance
ratio.
The price of the system includes all hardware,
software, and maintenance fees that the
customer would expect to pay.

CSC3501 - S.J. Park

11.4 Benchmarking

The Transaction Performance Council has also
devised benchmarks for decision support systems
(used for applications such as data mining) and for
Web-based e-commerce systems.

For all of the TPC benchmarks the systems tested

23

For all of the TPC benchmarks, the systems tested
must be available for general sale at the time of the
test and at the prices cited in a full disclosure report.

Results of the tests are audited by an independent
auditing firm that has been certified by the TPC.

CSC3501 - S.J. Park

11.4 Benchmarking

TPC benchmarks are a kind of simulation tool.
They can be used to optimize system performance
under varying conditions that occur rarely under
normal conditions.
Other kinds of simulation tools can be devised to

24

Other kinds of simulation tools can be devised to
assess performance of an existing system, or to
model the performance of systems that do not yet
exist.
One of the greatest challenges in creation of a
system simulation tool is in coming up with a realistic
workload.

5

CSC3501 - S.J. Park

11.4 Benchmarking

To determine the workload for a particular system
component, system traces are sometimes used.
Traces are gathered by using hardware or software
probes that collect detailed information concerning
the activity of a component of interest.

25

y p
Because of the enormous amount of detailed
information collected by probes, they are usually
engaged for only a few seconds.
Several trace runs may be required to obtain
statistically useful system information.

CSC3501 - S.J. Park

11.4 Benchmarking

Devising a good simulator requires that one keep a
clear focus as to the purpose of the simulator
A model that is too detailed is costly and time-
consuming to write.
Conversely it is of little use to create a simulator that

26

Conversely, it is of little use to create a simulator that
is so simplistic that it ignores important details of the
system being modeled.
A simulator should be validated to show that it is
achieving the goal that it set out to do: A simple
simulator is easier to validate than a complex one.

CSC3501 - S.J. Park

Computer performance assessment relies upon
measures of central tendency that include the
arithmetic mean, weighted arithmetic mean, the
geometric mean, and the harmonic mean.

Chapter 11 Conclusion

27

Each of these is applicable under different
circumstances.
Benchmark suites have been designed to provide
objective performance assessment. The most well
respected of these are the SPEC and TPC
benchmarks.

CSC3501 - S.J. Park

CPU performance depends upon many factors.
These include pipelining, parallel execution units,
integrated floating-point units, and effective
branch prediction.

Chapter 11 Conclusion

28

User code optimization affords the greatest
opportunity for performance improvement.
Code optimization methods include loop
manipulation and good algorithm design.

