
1

Computer ArchitectureComputer Architecture
(CSC-3501)
Lecture 3
(22 Jan 2008)

1

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement
Today, 1st homework will be uploaded at our class website

Due date is the beginning of next lecture
Late homework grade will be dropped 20% per date lateg pp % p

2

2

CSC3501 - S.J. Park

Floating Point
The signed magnitude, one’s complement, and two’s complement
representation that we have just presented deal with integer values only.

Without modification, these formats are not useful in scientific or business
applications that deal with real number values.

Floating-point representation solves this problem.

If we are clever programmers, we can perform floating-point calculations
using any integer format.

This is called floating-point emulation, because floating point values aren’t
stored as such, we just create programs that make it seem as if floating-
point values are being used.

Most of today’s computers are equipped with specialized hardware that
performs floating-point arithmetic with no special programming required.

3

CSC3501 - S.J. Park

Floating Point Representation
Computers use a form of scientific
notation for floating-point
representation ep ese a o

Numbers written in scientific notation
have three components:
Computer representation of a floating-
point number consists of three fixed-
size fields:

The IEEE-754 single precision floating point
d d 8 bi d 23 bistandard uses an 8-bit exponent and a 23-bit

significand.
The IEEE-754 double precision standard uses an
11-bit exponent and a 52-bit significand.

4

3

CSC3501 - S.J. Park

How to Convert to Base-2 Floating Point
Example:

Express 3210 in the simplified 14-bit floating-
point model.

Convert 3210 to Base 2
1000002 =1.0 X 25

Normalize (leftmost bit of the significand must
be 1)

1.0 X 25 = 0.1 X 26 00110

5

For illustrative purposes, we will use a 14-bit
model with a 5-bit exponent and an 8-bit
significand.

CSC3501 - S.J. Park

Why Normalization ?
The illustrations shown at the right are all equivalent
representations for 32 using our simplified model.
Not only do these synonymous representations wasteNot only do these synonymous representations waste
space, but they can also cause confusion.

0.1 X 26

0.01 X 27

0.001 X 28

Rule: leftmost bit of the significand must be 1.
6

0.001 X 2

0.0001 X 29

4

CSC3501 - S.J. Park

How to Represent Negative Exponent 2-2 ?
Biased exponent

Exponent larger than biased is positive integer exponent
Exponent smaller than biased is negative integer exponentExponent smaller than biased is negative integer exponent
Example 1: express 3210 in the revised 14-bit floating-point model.

We know that 32 = 1.0 x 25 = 0.1 x 26.

To use our excess 16 biased exponent, we add 16 to 6, giving 2210 (=101102).

Negative Exponent
Example 2: express 0.062510 in the revised 14-bit floating-point model.

We know that 0.0625 is 2-4.
So in (binary) scientific notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.
To use our excess 16 biased exponent, we add 16 to -3, giving 1310 (=011012).

7

CSC3501 - S.J. Park

Another Example of Floating Point
Example:

Express -26.62510 in the revised 14-bit floating-point model.
We find 26.62510 = 11010.1012.

Integral part 26 = 110102

Fractional part 0.625 = 0.1012

0.625 X 2 = 1.25 1 (generate 1 and continue with the rest)
0.25 X 2 = 0.5 0 (generate 0 and continue)
0.5 X 2 = 1.0 1 (generate 1 and nothing remains)

Normalizing, we have: 26.62510 = 11010.1012 =0.11010101 x 2 5.
To use our excess 16 biased exponent, we add 16 to 5, giving 2110 (=101012). We also
need a 1 in the sign bit.

8

5

CSC3501 - S.J. Park

IEEE-754 Floating Point Standard
Both the 14-bit model that we have presented and the IEEE-754 floating
point standard allow two representations for zero.

Zero is indicated by all zeros in the exponent and the significand, but the sign bit
b i h 0 1can be either 0 or 1.

This is why programmers should avoid testing a floating-point value for
equality to zero.

Negative zero does not equal positive zero.

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

9

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

NaN is used for numbers that don’t exist, such as √-1 or log(-5).

CSC3501 - S.J. Park

History of Character Codes
The earliest computer coding systems used six bits.

Binary-coded decimal (BCD) was one of these early codes. It was used by IBM
mainframes in the 1950s and 1960s.

In 1964, BCD was extended to an 8-bit code, Extended Binary-
Coded Decimal Interchange Code (EBCDIC).

EBCDIC was one of the first widely-used computer codes that supported upper
and lowercase alphabetic characters, in addition to special characters, such as
punctuation and control characters.

EBCDIC and BCD are still in use by IBM mainframes today.

Other computer manufacturers chose the 7-bit ASCII (American
Standard Code for Information Interchange) as a replacement for 6-
bit codes.

While BCD and EBCDIC were based upon punched card codes, ASCII was
based upon telecommunications (Telex) codes.

Until recently, ASCII was the dominant character code outside the IBM
mainframe world.

10

6

CSC3501 - S.J. Park

Character Codes (Cont)
Many of today’s systems embrace
Unicode, a 16-bit system that can
encode the characters of every
language in the world.

The Java programming language,
and some operating systems now
use Unicode as their default
character code.

The Unicode codespace is divided
into six parts. The first part is for
W t l h b t d i l diWestern alphabet codes, including
English, Greek, and Russian.

11

CSC3501 - S.J. Park

Error Detection
It is physically impossible for any data recording or
transmission medium to be 100% perfect 100% of the time
over its entire expected useful life.o e s e e e pec ed use u e

Thus, error detection and correction is critical to accurate data
transmission, storage and retrieval.

Error Detection
Parity bit can check some simple bit error

Sometimes high-order bit of ASCII coded to enable detection of errors
Even parity – set bit to make number of 1’s even

A (01000001) with even parity is 01000001
C (01000011) with even parity is 11000011

12

7

CSC3501 - S.J. Park

Cyclic redundancy checking (CRC)
CRC utilizes the redundant bits at the end of the block
It is more powerful method
MethodMethod

Original message M(x) / Generator polynomial G(x)
Quotient is discarded
Remainder is attached to message in BCC (Block Check Character)

Commonly used cyclic codes
CRC-12 G(x) = x12 + x11 + x3 + x2 + x + 1
CRC-16 G(x) = x16 + x15 + x2 + 1
CRC-CCITT G(x) = x16 + x12 + x5 + 1

13

CSC3501 - S.J. Park

CRC Example at page 83
Encode

Original Message = 1001011
M(x) = 1x6+0x5+0x4+1x3+0x2+1x1+1x0 = x6+x3+x1+1()
G(x) = 1x3+0x2+1x1+1x0= x3+x1+1

Shift M(x) Make large number before division
M(x) X x3 = x9+x6+x4+x3 = 1001011000

M(x)X x3 / G(x)
1001011000 / 1011 = quotient is 1010 and remainder is 100

Add remainder 100 to 1001011000
1001011000 + 100 = 1001011100

Decode
Encoded message / G(x)

1001011100 / 1011 = quotient is 1010100 and remainder is Zero
Zero remainder means no error
Non-zero remainder means some errors

14

8

CSC3501 - S.J. Park

Error Correction
Hamming code can detect errors and correct them.

Hamming codes are code words formed by adding redundant check
bits, or parity bits, to a data word., p y ,
The Hamming distance between two code words is the number of bits in
which two code words differ.

The minimum Hamming distance for a code is the smallest Hamming
distance between all pairs of words in the code.

The minimum Hamming distance for a code D(min) determines its

This pair of bytes has a
Hamming distance of 3:

The minimum Hamming distance for a code, D(min), determines its
error detecting and error correcting capability.

Hamming codes can detect D(min) - 1 errors and correct
errors

15

CSC3501 - S.J. Park

Hamming Code
Example

Using our code words of length 12, number each bit position starting with 1 in the
low-order bit.

Each bit position corresponding to an even power of 2 will be occupied by a
check bit.

These check bits contain the parity of each bit position for which it participates in
the sum.

Since 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, and 11.
Position 2 will contain the parity for bits 3, 6, 7, 10, and 11.

Bit 1checks the digits, 3, 5, 7, 9, and 11, so its value is 1 to make even
parity.
Bit 4 checks the digits, 5, 6, 7, and 12, so its value is 1.
Bit 8 checks the digits, 9, 10, 11, and 12, so its value is also 1.

16

9

CSC3501 - S.J. Park

Hamming Code Cont.
Suppose an error occurs in bit 5, as shown above. Our parity bit
values are:

Bit 1 checks digits, 3, 5, 7, 9, and 11. Its value is 1, but should be zero.
Bit 2 checks digits 2, 3, 6, 7, 10, and 11. The zero is correct.
Bit 4 checks digits, 5, 6, 7, and 12. Its value is 1, but should be zero.
Bit 8 checks digits, 9, 10, 11, and 12. This bit is correct.

We have erroneous bits in positions 1 and 4.
With two parity bits that don’t check we know that the error is in theWith two parity bits that don t check, we know that the error is in the
data, and not in a parity bit.
Which data bits are in error? We find out by adding the bit positions of
the erroneous bits.
Simply, 1 + 4 = 5. This tells us that the error is in bit 5. If we change bit
5 to a 1, all parity bits check and our data is restored.

17

