Announcement

- Today, 1st homework will be uploaded at our class website
 - Due date is the beginning of next lecture
 - Late homework grade will be dropped 20% per date late
Floating Point

- The signed magnitude, one’s complement, and two’s complement representation that we have just presented deal with integer values only.
- Without modification, these formats are not useful in scientific or business applications that deal with real number values.
- Floating-point representation solves this problem.
- If we are clever programmers, we can perform floating-point calculations using any integer format.
- This is called floating-point emulation, because floating point values aren’t stored as such, we just create programs that make it seem as if floating-point values are being used.
- Most of today’s computers are equipped with specialized hardware that performs floating-point arithmetic with no special programming required.

Floating Point Representation

- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:
- Computer representation of a floating-point number consists of three fixed-size fields:
 - The IEEE-754 single precision floating point standard uses an 8-bit exponent and a 23-bit significand.
 - The IEEE-754 double precision standard uses an 11-bit exponent and a 52-bit significand.
How to Convert to Base-2 Floating Point

Example:

- Express 32_{10} in the simplified 14-bit floating-point model.
- Convert 32_{10} to Base 2:
 - 100000_{2} = 1.0 \times 2^{5}
- Normalize (leftmost bit of the significand must be 1):
 - 1.0 \times 2^{5} = 0.1 \times 2^{6}

For illustrative purposes, we will use a 14-bit model with a 5-bit exponent and an 8-bit significand.

Why Normalization?

- The illustrations shown at the right are all equivalent representations for 32 using our simplified model.
- Not only do these synonymous representations waste space, but they can also cause confusion.

- Rule: leftmost bit of the significand must be 1.
How to Represent Negative Exponent 2^{-2}?

- **Biased exponent**
 - Exponent larger than biased is positive integer exponent
 - Exponent smaller than biased is negative integer exponent

- **Example 1**: express 32_{10} in the revised 14-bit floating-point model.
 - We know that $32 = 1.0 \times 2^5 = 0.1 \times 2^6$.
 - To use our excess 16 biased exponent, we add 16 to 6, giving $22_{16} (=10110_2)$.

 \[
 \begin{array}{c}
 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
 \end{array}
 \]

- **Negative Exponent**

- **Example 2**: express 0.0625_{10} in the revised 14-bit floating-point model.
 - We know that 0.0625 is 2^{-4}.
 - So in (binary) scientific notation $0.0625 = 1.0 \times 2^{-4} = 0.1 \times 2^{-3}$.
 - To use our excess 16 biased exponent, we add 16 to -3, giving $13_{10} (=01101_2)$.

 \[
 \begin{array}{c}
 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
 \end{array}
 \]

Another Example of Floating Point

- **Example**: Express -26.625_{10} in the revised 14-bit floating-point model.
 - We find $26.625_{10} = 11010.101_2$.
 - Integral part $26 = 11010_2$
 - Fractional part $0.625 = 0.101_2$
 - $0.625 \times 2 = 1.25 \quad 1$ (generate 1 and continue with the rest)
 - $0.25 \times 2 = 0.5 \quad 0$ (generate 0 and continue)
 - $0.5 \times 2 = 1.0 \quad 1$ (generate 1 and nothing remains)

 Normalizing, we have: $26.625_{10} = 11010.101_2 = 1.1010101 \times 2^5$.
 - To use our excess 16 biased exponent, we add 16 to 5, giving $21_{10} (=10101_2)$. We also need a 1 in the sign bit.

 \[
 \begin{array}{c}
 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1
 \end{array}
 \]
IEEE-754 Floating Point Standard

- Both the 14-bit model that we have presented and the IEEE-754 floating point standard allow two representations for zero.
 - Zero is indicated by all zeros in the exponent and the significand, but the sign bit can be either 0 or 1.
- This is why programmers should avoid testing a floating-point value for equality to zero.
 - Negative zero does not equal positive zero.

<table>
<thead>
<tr>
<th>Number</th>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>00000000</td>
<td>00000000000000000000000</td>
</tr>
<tr>
<td>∞</td>
<td>0</td>
<td>11111111</td>
<td>00000000000000000000000</td>
</tr>
<tr>
<td>-∞</td>
<td>1</td>
<td>11111111</td>
<td>00000000000000000000000</td>
</tr>
<tr>
<td>NaN</td>
<td>X</td>
<td>11111111</td>
<td>non-zero</td>
</tr>
</tbody>
</table>

NaN is used for numbers that don’t exist, such as √-1 or log(-5).

History of Character Codes

- The earliest computer coding systems used six bits.
 - Binary-coded decimal (BCD) was one of these early codes. It was used by IBM mainframes in the 1950s and 1960s.
- In 1964, BCD was extended to an 8-bit code, Extended Binary-Coded Decimal Interchange Code (EBCDIC).
 - EBCDIC was one of the first widely-used computer codes that supported upper and lowercase alphabetic characters, in addition to special characters, such as punctuation and control characters.
 - EBCDIC and BCD are still in use by IBM mainframes today.
- Other computer manufacturers chose the 7-bit ASCII (American Standard Code for Information Interchange) as a replacement for 6-bit codes.
 - While BCD and EBCDIC were based upon punched card codes, ASCII was based upon telecommunications (Telex) codes.
 - Until recently, ASCII was the dominant character code outside the IBM mainframe world.
Character Codes (Cont)

- Many of today’s systems embrace Unicode, a 16-bit system that can encode the characters of every language in the world.
 - The Java programming language, and some operating systems now use Unicode as their default character code.
- The Unicode codespace is divided into six parts. The first part is for Western alphabet codes, including English, Greek, and Russian.

<table>
<thead>
<tr>
<th>Character Types</th>
<th>Language</th>
<th>Number of Characters</th>
<th>Hexadecimal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabets</td>
<td>Latin, Greek, Cyrillic, etc.</td>
<td>6192</td>
<td>0000 to FFF</td>
</tr>
<tr>
<td>Symbols</td>
<td>Digitals, Mathematical, etc.</td>
<td>4096</td>
<td>2000 to 2FFF</td>
</tr>
<tr>
<td>CJK</td>
<td>Chinese, Japanese, and Korean pictographs, symbols and punctuation</td>
<td>4096</td>
<td>3000 to 3FFF</td>
</tr>
<tr>
<td>Han</td>
<td>Unified Chinese, Japanese, and Korean</td>
<td>40,960</td>
<td>4000 to DFFF</td>
</tr>
<tr>
<td>Han Expansion</td>
<td></td>
<td>4096</td>
<td>E000 to EFFF</td>
</tr>
<tr>
<td>User Defined</td>
<td></td>
<td>4096</td>
<td>F000 to FFFF</td>
</tr>
</tbody>
</table>

Error Detection

- It is physically impossible for any data recording or transmission medium to be 100% perfect 100% of the time over its entire expected useful life.
 - Thus, error detection and correction is critical to accurate data transmission, storage, and retrieval.
- **Error Detection**
 - Parity bit can check some simple bit error
 - Sometimes high-order bit of ASCII coded to enable detection of errors
 - Even parity – set bit to make number of 1’s even
 - A (01000001) with even parity is 01000001
 - C (01000011) with even parity is 11000011

<table>
<thead>
<tr>
<th>Parity (odd) D7 D6 D5 D4 D3 D2 D1 D0</th>
<th>Parity (odd) D7 D6 D5 D4 D3 D2 D1 D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted: 0 0 1 1 0 1 1 1 0 1 0 1</td>
<td>Transmitted: 0 0 1 1 0 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>Received: 0 0 1 1 0 1 0 1 0 1 1</td>
<td>Received: 0 0 1 1 0 1 0 1 0 1</td>
</tr>
</tbody>
</table>

Single bit error

Error: two bit or an even number of bits go undetected
Cyclic redundancy checking (CRC)

- CRC utilizes the redundant bits at the end of the block
- It is more powerful method
- Method
 - Original message \(M(x) \) / Generator polynomial \(G(x) \)
 - Quotient is discarded
 - Remainder is attached to message in BCC (Block Check Character)

- Commonly used cyclic codes
 - CRC-12 \(G(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1 \)
 - CRC-16 \(G(x) = x^{16} + x^{15} + x^2 + 1 \)
 - CRC-CCITT \(G(x) = x^{16} + x^{12} + x^5 + 1 \)

CRC Example at page 83

- Encode
 - Original Message = 1001011
 - \(M(x) = 1x^6+0x^5+0x^4+1x^3+0x^2+1x^1+1x^0 = x^6+x^3+x^1+1 \)
 - \(G(x) = 1x^3+0x^2+1x^1+1x^0= x^3+x^1+1 \)
 - Shift \(M(x) \) Make large number before division
 - \(M(x) \times x^3 = x^9+x^6+x^4+x^3 = 1001011000 \)
 - \(M(x)X \times x^3 / G(x) \)
 - 1001011000 / 1011 = quotient is 1010 and remainder is 100
 - Add remainder 100 to 1001011000
 - 1001011000 + 100 = 1001011100

- Decode
 - Encoded message / \(G(x) \)
 - 1001011100 / 1011 = quotient is 1010100 and remainder is Zero
 - Zero remainder means no error
 - Non-zero remainder means some errors
Error Correction

- Hamming code can detect errors and correct them.
 - Hamming codes are code words formed by adding redundant check bits, or parity bits, to a data word.
 - The Hamming distance between two code words is the number of bits in which two code words differ.
 - This pair of bytes has a Hamming distance of 3:
 - Data word: 1000 1001
 - Check word: 1011 0001
 - The minimum Hamming distance for a code is the smallest Hamming distance between all pairs of words in the code.
 - The minimum Hamming distance for a code, D(min), determines its error detecting and error correcting capability.
 - Hamming codes can detect \(D(min) - 1 \) errors and correct \(\frac{D(min) - 1}{2} \) errors.

Hamming Code

- Example
 - Using our code words of length 12, number each bit position starting with 1 in the low-order bit.
 - Each bit position corresponding to an even power of 2 will be occupied by a check bit.
 - These check bits contain the parity of each bit position for which it participates in the sum.

\[
\begin{array}{cccccccccccc}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
& & & & \text{P} & & \text{P} & & \text{P} & & \text{P} & & \\
\end{array}
\]

- Since \(2 (=2^1) \) contributes to the digits, 2, 3, 6, 7, 10, and 11. Position 2 will contain the parity for bits 3, 6, 7, 10, and 11.
 - Bit 1 checks the digits, 3, 5, 7, 9, and 11, so its value is 1 to make even parity.
 - Bit 4 checks the digits, 5, 6, 7, and 12, so its value is 1.
 - Bit 8 checks the digits, 9, 10, 11, and 12, so its value is also 1.

\[
\begin{array}{cccccccccccc}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Hamming Code Cont.

- Suppose an error occurs in bit 5, as shown above. Our parity bit values are:
 - Bit 1 checks digits, 3, 5, 7, 9, and 11. Its value is 1, but should be zero.
 - Bit 2 checks digits 2, 3, 6, 7, 10, and 11. The zero is correct.
 - Bit 4 checks digits, 5, 6, 7, and 12. Its value is 1, but should be zero.
 - Bit 8 checks digits, 9, 10, 11, and 12. This bit is correct.

```
  1 1 0 1 1 0 1 0 1 0 0 1
12 11 10 9 8 7 6 5 4 3 2 1
```

- We have erroneous bits in positions 1 and 4.
- With two parity bits that don't check, we know that the error is in the data, and not in a parity bit.
- Which data bits are in error? We find out by adding the bit positions of the erroneous bits.
- Simply, 1 + 4 = 5. This tells us that the error is in bit 5. If we change bit 5 to a 1, all parity bits check and our data is restored.