

Seung-Jong Park (Jay)
http://www.csc.Isu.edu/~sjpark

Announcement

- $1^{\text {st }}$ Homework's due date is tomorrow
\square Due date will be 72 hours later

,
 Objectives of Ch. 4

- Understand the relationship between Boolean logic and digital computer circuits.
- Learn how to design simple logic circuits.
- Understand how digital circuits work together to form complex computer systems

CSC3501 - S.J. Park

Why do we need to learn logic?

- "The Intel Core 2 Duo desktop processor is an energy-efficient marvel, packing 291 million transistors yet consuming lower power" from Intel

- We need to know relationships between transistors and computers
\square Transistors comprise basic logic gates, e.g., AND, OR, NOT, NAND, NOR, XOR, etc.
\square Basic logic gates comprise complicated functional units, e.g., adder, counter, memory, CPU
\square Finally, computer is built with those complicated functional units

Computer Architecture

Basic Logic Gates

- Perform logic functions:
\square Inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
\square NOT gate, buffer
- Two-input:
\square AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

$$
\begin{array}{l|l}
Y=\bar{A} \\
& \\
A & Y \\
\hline 0 & 1 \\
1 & 0
\end{array}
$$

$$
Y=A
$$

$$
\begin{array}{c|c}
A & Y \\
\hline 0 & 0 \\
1 & 1
\end{array}
$$

Two-Input Logic Gates

$$
Y=A B
$$

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

$Y=A+B$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR3			
$\begin{aligned} & A \\ & \stackrel{A}{B}= \\ & C \end{aligned}$			
$Y=\overline{A+B+C}$			
A	B	C	Y
0	0	0	
	0	1	
	1	0	
	1	1	
	0	0	
	0	1	
	1	0	
	1	1	

AND4

$Y=A B C D$

Transistor

CSC3501 - S.J. Park

Transistor

- Transistor is a three-ported voltage-controlled switch
\square Two of the ports (drain and source) are connected depending on the voltage on the third port (gate)
\square For example, in the switch below the two terminals (d and s) are connected (ON) only when the third terminal (g) is 1
nMOS

$g=0$
$g=1$
d
\oint_{s}
i
$\begin{array}{ll}d & \\ \vdots \\ i & \mathrm{ON} \\ \mathrm{s} & \end{array}$
pMOS

${ }_{d}^{s} \mathrm{ON}$
s. OFF
i
d

Different Kinds of Transistors

- Junction Transistor
\square A Bipolar Transistor essentially consists of a pair of PN Junction Diodes that are joined back-to-back.
\square It acts as an amplifier or a switch
- Metal oxide silicon (MOS) transistors
\square Polysilicon (used to be metal) gate
\square Oxide (silicon dioxide) insulator
\square Doped silicon substrate and wells

[^0]gate
source $\stackrel{\frac{1}{\curvearrowleft}}{\curvearrowleft}$ drain
pMOS
13

How to Build Basic Logic Gates

- Build NOT gate with transistors

How to build Basic Logic Gates

- Build a NAND gate with transistors

$Y=\overline{A B}$

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

How to Build Other Logic Gates

- Build a AND gate with NAND gate

- Build a OR gate with NAND gate

- Therefore, NAND gate is a basic unit to build complicated functional logic circuits
- NOW!, we know that transistors are fundamental components to build a computer !!!

Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.

In formal logic, these values are "true" and "false."
\square In digital systems, these values are "on" and "off," 1 and 0, or "high" and "low."

- Boolean expressions are created by performing operations on Boolean variables.
\square Common Boolean operators include AND, OR, and NOT.

Boolean Algebra

- A Boolean operator can be completely described using a truth table.
- The truth table for the Boolean operators AND and OR are shown at the right.
- The AND operator is also known as a Boolean product. The OR operator is the Boolean sum.
- The truth table for the Boolean NOT operator i s shown at the right.
X AND Y

X	Y	XY
0	0	0
0	1	0
1	0	0
1	1	1

CSC3501 - S.J. Park

- The NOT operation is most often designated by an overbar. It is sometimes indicated by a prime mark (') or an "elbow" (\upharpoonright).

Boolean Function

- A Boolean function has:
- At least one Boolean variable,
- At least one Boolean operator, and
- At least one input from the set $\{0,1\}$.
- It produces an output that is also a member of the set $\{0$, 1\}.

Now you know why the binary numbering system is so handy in digital systems.

Boolean Function

- The truth table for the Bool ean function:

$$
F(x, y, z)=x \bar{z}+y
$$

is shown at the right.

- To make evaluation of the Boolean function easier, th e truth table contains extra (shaded) columns to hold e valuations of subparts of th

$$
F(x, y, z)=x \bar{z}+y
$$

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\overline{\mathbf{z}}$	$\mathbf{x} \overline{\mathbf{z}}$	$\mathbf{x} \overline{\mathbf{z}}+\mathbf{y}$
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

-
 Boolean Function

CSC3501 - S.J. Park

- As with common arithmetic, Bool ean operations have rules of pre cedence.
- The NOT operator has highest pr iority, followed by AND and then OR.
- This is how we chose the (shade d) function subparts in our table.

x	Y	z	\bar{z}	$\mathbf{x} \overline{\mathbf{z}}$	$x \bar{z}+y$
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

To be continued ...more complicated Boolean Algebra.

[^0]: source $\stackrel{\text { gate }}{\stackrel{\perp}{\curvearrowleft} \text { drain }}$
 nMOS

