

Boolean Identit	CSC3501 - S.J. Park
 Most Boolean identities have a AND (product) form as well as 	Identity AND OR Name Form Form
an OR (sum) form. We give ou identities using both forms. O first group is rather intuitive:	$ \begin{array}{c c} Identity Law \\ Null Law \\ Idempotent Law \\ Inverse Law \\ \end{array} \begin{array}{c c} 1x = x \\ 0x = 0 \\ xx = x \\ x\overline{x} = 0 \\ x + \overline{x} = 1 \end{array} $
 We can use Boolean identities to simplify the function: F(X, Y 	$Z) = (X + Y) (X + \overline{Y}) (\overline{X\overline{Z}})$
$(X + Y) (X + \overline{Y}) (\overline{X\overline{Z}})$ $(X + Y) (X + \overline{Y}) (\overline{X} + Z)$ $(XX + X\overline{Y} + XY + Y\overline{Y}) (\overline{X} + Z)$	Idempotent Law (Rewriting) DeMorgan's Law Distributive Law
((X + YY) + X(Y + Y))(X + Z) ((X + 0) + X(1))(\overline{X} + Z) X(\overline{X} + Z)	Commutative & Distributive Laws Inverse Law Idempotent Law
xx + xz 0 + xz	Distributive Law Inverse Law

