

The Essentials of Computer Organization and Architecture $2^{\text {nd }}$ Edition

Linda Null and Julia Lobur
Jones and Bartlett Publishers, 2006

Errata (1 ${ }^{\text {st }}$ Printing)

To confirm you have the first printing, see page ii for the following:
Printed in the United States of America 100908070610987654321

As errors are found in the textbook, they will be added to this list. The list will be updated as necessary. If you find an error, please send it to ecoa@jbpub.com.

Symbols Used

$\mathrm{ti}=\mathrm{ith}$ line from top
bi $=$ ith line from bottom
$\mathrm{Fi}=$ Figure i
$\mathrm{X} \rightarrow \mathrm{Y}=$ replace X with Y
$\mathrm{Ti}=$ Table i
$\mathrm{Pi}=$ Problem i
Ei $=$ Example i

Format

Page \# Location: Correction
Strikethrough: Correction/modification in errata

February 2006 List (publishing errors introduced in the production process)

xxii Chapter 2: Table of contents is missing Focus On section:
Focus On Codes for Data Recording and Transmission 100
2A. 1 Non-Return-to-Zero Code 100
2A. 2 Non-Return-to-Zero-Invert Code 101
2A. 3 Phase Modulation (Manchester Code) 102
2A. 4 Frequency Modulation 103

2A. 5 Run-Length-Limited Code 103
2A. 6 Partial Response Maximum Likelihood Coding 104
2A. 7 Summary 107
Exercises 107
xxiii Chapter 3: Table of contents is missing Focus On section:
Focus on Karnaugh Maps 163
3A. 1 Introduction 163
3A. 2 Description of Kmaps and Terminology 163
3A. 3 Kmap Simplification for Two Variables 166
3A. 4 Kmap Simplification for Three Variables 167
3A. 5 Kmap Simplification for Four Variables 169
3A. 6 Don't Care Conditions 173
3A. 7 Summary 174
Exercises 174
xxvi Chapter 7: Table of contents is missing Focus On section:
Focus On Data Compression 384
7A. 1 Introduction 384
7A. 2 Statistical Coding 387
7A.2.1 Huffman Coding 387
7A.2.2 Arithmetic Coding 391
7A. 3 Ziv-Lempel (LZ) Dictionary Systems 394
7A. 4 GIF and PNG Compression 398
7A. 5 JPEG Compression 399
7A. 6 Summary 404
Exercises 404
105 F2A.6: The node numbers are difficult to read because the lines were pushed into the nodes. The correct figure is as follows:

260 F5.3: There are double lines on the entries at locations 1000 and 1100. The correct figure is:

277 P13 and P14: The tables have double lines, similar to the error above on page 260.

March 2006 List

134 t 2 : forces both Q and Q^{\prime} to $1 \rightarrow$ forces both Q and Q^{\prime} to 0
134 t3: $1=Q^{\prime} \rightarrow 0=Q^{\prime}$
162 P49: Should have no blue diamond

163 P51: Should have no blue diamond
240 P19: For example, to multiple \rightarrow For example, to multiply

April 2006 List

328 b6: George Amdahl \rightarrow Gene Amdahl

May 2006 List

538 P2: personal computer, why do \rightarrow personal computer. Why do

June 2006 List

5 T1.1: 1 quintillionth $=10^{+18} \rightarrow 1$ quintillionth $=10^{-18}$
52 t7: $167+947=114 \rightarrow 167+947=1114$
140 t15: function, $\mathrm{d} \rightarrow$ function, δ

August 2006 List

211 E4.1: 10A Jump Loop \rightarrow 10F Jump Loop
237 P6: $256 \mathrm{~KB} \times 8$ RAM chips $\rightarrow 256 \mathrm{~K} \times 8$ RAM chips

September 2006 List

$216 \mathrm{t} 18: \mathrm{P}_{0} \mathrm{P}_{2} \mathrm{~T}_{1}: \mathrm{MBR} \longleftarrow \mathrm{M}[\mathrm{MAR}] \rightarrow \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{~T}_{1}: \mathrm{MBR} \longleftarrow \mathrm{M}[\mathrm{MAR}]$
216 b12: At clock cycle C_{1}, all signals except $\mathrm{P}_{0}, \mathrm{P}_{2}$, and T_{1} are \rightarrow At clock cycle C_{1}, all signals except $\mathrm{P}_{3}, \mathrm{P}_{4}$, and T_{1} are

217 F4.16: In clock cycle C_{1}, signals $\mathrm{P}_{3}, \mathrm{P}_{4}$, and T_{1} should be high, nothing else, so replace Figure 4.16 with the following:

355 b6: spinning the disk faster \rightarrow spinning the disk slower

March 2007 List

543 b14: System A is \mathbf{n} times as fast as System B \rightarrow System A is n times faster than System B
543 b6: performance of Car A is 1.25 times as fast as Car B \rightarrow performance of Car A is 1.33 times faster than Car B

543 b5: $4 / 3=1.25 \rightarrow 4 / 3=1.33$
543 b3: Car A is also 25\% faster than Car B \rightarrow Car A is also 33% faster than Car B
543 b1: $25 \% \rightarrow 33 \%$

April 2007 List

5 b8: If a disk holds 1 MB , then it holds 2^{30} bytes \rightarrow If a disk holds 1 MB , then it holds 2^{20} bytes

May 2007 List

63 t5: Examples using signed numbers are given \rightarrow Examples using signed 2’s complement numbers are given

63 T2.2: $0010(-2) \rightarrow 0010(+2)$
69 T2.4: for the 0.5 entry, replace the exponent 10000000 with 01111110

June 2007 List

477 f9.3: Three-Dimensional Hypercube \rightarrow Four-Dimensional Hypercube
765 P7: $6 \times 2^{24} \rightarrow 6 \times 2^{12}$

October 2007 List

67 E2.27: Multiply \rightarrow Assuming a 16-bit bias, multiply:
68: T2.3: In top row: $1000.001 \rightarrow 10000.001$
69: T2.4: Representation for 0.5: $10000000 \rightarrow 01111110$
122 t13: we AND the byte with 04h \rightarrow we AND the byte with $04 \mathrm{~h}\left(04_{16}\right)$
154 t24: Petgold, Charles \rightarrow Petzold, Charles

November 2007 List

214 b1: $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{0} \rightarrow \mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$

March 2008 List

304 t22: address 9 to the physical address $1230 \rightarrow$ address 9 to the physical address 1239

