

The Essentials of Computer Organization and Architecture $2^{\text {nd }}$ Edition

Linda Null and Julia Lobur
Jones and Bartlett Publishers, 2006

Errata ($2^{\text {nd }}$ Printing)

To confirm you have the second printing, see page ii for the following:
Printed in the United States of America
10090807061098765432

As errors are found in the textbook, they will be added to this list. The list will be updated as necessary. If you find an error, please send it to ecoa@jbpub.com.

Symbols Used
$\mathrm{ti}=\mathrm{ith}$ line from top
bi $=$ ith line from bottom
$\mathrm{Fi}=$ Figure i
$\mathrm{X} \rightarrow \mathrm{Y}=$ replace X with Y
$\mathrm{Ti}=$ Table i
$\mathrm{Pi}=$ Problem i
$\mathrm{Ei}=$ Example i

Format

Page \# Location: Correction
Strikethrough: Correction/modification in errata

June 2006 List

5 T1.1: 1 quintillionth $=10^{+18} \rightarrow 1$ quintillionth $=10^{-18}$
52 t7: $167+947=114 \rightarrow 167+947=1114$

140 t 15 : function, $\mathrm{d} \rightarrow$ function, δ

August 2006 List

211 E4.1: 10A Jump Loop \rightarrow 10F Jump Loop
237 P6: $256 \mathrm{~KB} \times 8$ RAM chips $\rightarrow 256 \mathrm{~K} \times 8$ RAM chips

September 2006 List

216 t18: $\mathrm{P}_{0} \mathrm{P}_{2} \mathrm{~T}_{1}: \mathrm{MBR} \longleftarrow \mathrm{M}[\mathrm{MAR}] \rightarrow \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{~T}_{1}: \mathrm{MBR} \longleftarrow \mathrm{M}[\mathrm{MAR}]$
216 b12: At clock cycle C_{1}, all signals except $\mathrm{P}_{0}, \mathrm{P}_{2}$, and T_{1} are \rightarrow
At clock cycle C_{1}, all signals except $\mathrm{P}_{3}, \mathrm{P}_{4}$, and T_{1} are
217 F4.16: In clock cycle C_{1}, signals $\mathrm{P}_{3}, \mathrm{P}_{4}$, and T_{1} should be high, nothing else, so replace Figure 4.16 with the following:

355 b6: spinning the disk faster \rightarrow spinning the disk slower

March 2007 List

543 b14: System A is \mathbf{n} times as fast as System $B \rightarrow$ System A is n times faster than System B
543 b6: performance of Car A is 1.25 times as fast as Car B \rightarrow performance of Car A is 1.33 times faster than Car B

543 b5: $4 / 3=1.25 \rightarrow 4 / 3=1.33$
543 b3: Car A is also 25\% faster than Car B \rightarrow Car A is also 33% faster than Car B
543 b1: $25 \% \rightarrow 33 \%$

April 2007 List

5 b8: If a disk holds 1 MB , then it holds 2^{30} bytes \rightarrow If a disk holds 1 MB , then it holds 2^{20} bytes

May 2007 List

63 t5: Examples using signed numbers are given \rightarrow Examples using signed 2’s complement numbers are given

63 T2.2: $0010(-2) \rightarrow 0010(+2)$
69 T2.4: for the 0.5 entry, replace the exponent 10000000 with 01111110

June 2007 List

477 F9.3: Three-Dimensional Hypercube \rightarrow Four-Dimensional Hypercube
765 P7: $6 \times 2^{24} \rightarrow 6 \times 2^{12}$

October 2007 List

67 E2.27: Multiply \rightarrow Assuming a 16-bit bias, multiply:
68: T2.3: In top row: $1000.001 \rightarrow 10000.001$
69: T2.4: Representation for 0.5: $10000000 \rightarrow 01111110$
122 t13: we AND the byte with $04 \mathrm{~h} \rightarrow$ we AND the byte with $04 \mathrm{~h}\left(04_{16}\right)$
154 t24: Petgold, Charles \rightarrow Petzold, Charles

November 2007 List

214 b1: $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{0} \rightarrow \mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$

March 2008 List

304 t22: address 9 to the physical address $1230 \rightarrow$ address 9 to the physical address 1239

