
 31

Abstract— This paper presents a new congestion control

algorithm of TCP, called TCP-Fusion, and provides its extensive
evaluation results through simulations and implementations.
Recently, towards high-speed networks with large bandwidth
delay product, a number of different approaches have been
proposed to improve TCP performance. However, their potential
unfriendliness to TCP-Reno encumbers their wide deployment in
the Internet because TCP-Reno is already widely deployed. Most
recently, to satisfy efficiency and friendliness tradeoffs of TCP,
new approaches combining a loss-based protocol and a
delay-based protocol have been proposed, such as TCP-Adaptive
Reno and Compound TCP. Our TCP-Fusion also belongs to this
category and tries to utilize the residual capacity effectively
without impacts on coexisting flows, i.e. TCP-Reno flows. To
achieve this purpose, TCP-Fusion exploits three useful
characteristics of TCP-Reno, TCP-Vegas and TCP-Westwood in
its congestion avoidance strategy. In short, congestion window of
TCP-Fusion is decreased without causing too drastic reduction
and is increased with smart adaptability to coexisting TCP-Reno
flows according to the congestion level measurement estimated
from RTT. Our implementation and simulation results show that
TCP-Fusion can obtain the highest throughput among existing
TCP variants when there is unused residual capacity while its
friendliness to the TCP-Reno is sufficiently satisfied, otherwise, it
shares the same bandwidth to coexisting flows.

I. INTRODUCTION
CP (Transmission Control Protocol) is widely used in
current network, provides end-to-end, reliable congestion

control. The majority of data services including FTP and HTTP
in the Internet are carried by TCP. Recently, while the amount
of Internet traffic is explosively increasing with the rapid
growth of Internet users, the Internet is evolving to high-speed
networks with large bandwidth delay product (BDP). However
it is well known that current TCP (mostly TCP-Reno [1] and
TCP-NewReno [2]) throughput deteriorates in such high-speed
networks. This is believed to be primary due to the congestion
control algorithm of TCP-Reno, whose congestion window size
is increased by 1MSS/RTT and halved upon packet losses
regardless of network condition. That is to say, its window
control mechanism is too conservative in increase and drastic in
decrease for high-speed networks, respectively.

 To overcome this issue, a number of different approaches
have been proposed. These approaches can be classified into
three categories. One modifies an AIMD (Additive Increase
Multiplicative Decrease) mechanism of TCP congestion

avoidance phase to quickly increase and slowly decrease the
congestion window than TCP-Reno, to achieve high throughput
in high-speed networks. This approach is called a loss-based
protocol, which adjusts its congestion window size by causing
packet losses intentionally. Examples are High-speed TCP
(HSTCP, for short) [3], Scalable TCP [4], early version of
TCP-Westwood (TCPW) [5, 6], BIC [14] and CUBIC [16]. In
contrast to these loss-based protocols, as the second category, a
delay-based protocol makes use of the RTT as a network
congestion estimator and can achieve excellent steady state
performance. Examples are TCP-Vegas [7] and FAST TCP [8].
These advanced protocols promise to improve the TCP
performance significantly in high-speed networks. As many
researchers were pointing out, however, their potential
unfriendliness to TCP-Reno stands in the way of their wide
deployment. Since TCP-Reno is already widely used, not only
improving TCP performance but also friendliness to TCP-Reno
is one of the most important issues in designing a new protocol.
Recently, to manage efficiency and friendliness tradeoffs above,
as the third category, loss-based protocols using RTT metrics
have been proposed, e.g., Gentle high-speed TCP [11],
TCP-Africa [12], TCP-Adaptive Reno (ARENO) [9] and
Compound TCP (CTCP) [13]. They can adaptively switch their
congestion control mode or TCP response function according to
the congestion level measurement estimated from RTT.

In this paper, we propose a new hybrid congestion control
algorithm of TCP. This new protocol, called TCP-Fusion,
makes use of three useful characteristics of TCP-Reno,
TCP-Vegas and TCPW, and also belongs to the loss-based
protocol using RTT metric category mentioned above. The key
concept is similar to the existing ones, whose congestion
window sizes are increased aggressively whenever the network
is estimated underutilized. When the network is fully utilized,
they perform similarly to the TCP-Reno’s manner. Our
proposal, by modifying these characteristics to be a scalable
manner, can adjust its congestion window according to the left
unused capacity, and provides a good balance among high
efficiency and friendliness to TCP-Reno. Our implementation
and simulation evaluations including other TCP variants show
the effectiveness of TCP-Fusion.

This paper is organized as follows. In section Ⅱ, we describe
the TCP-Fusion algorithm. Section Ⅲ provides the
implementation and simulation results. Finally we conclude
this paper.

Kazumi KANEKO, Tomoki FUJIKAWA, Zhou SU and Jiro KATTO
Graduate School of Science and Engineering, Waseda University

3-4-1 Okubo, Shinjyuku-ku, Tokyo, 169-8555 Japan
E-mail: {kaneko, katto}@katto.comm.waseda.ac.jp

TCP-Fusion: A Hybrid Congestion Control
Algorithm for High-speed Networks

T

 32

II. TCP-FUSION PROTOCOL
TCP-Fusion maintains two congestion window sizes. The

one has two properties of TCP-Vegas and TCPW, which
provide efficiency in large leaky pipe, i.e., the link with large
bandwidth-delay product and non-negligible random losses.
The other one is updated like TCP-Reno, i.e., the value is
increased by 1MSS/RTT and halved upon packet losses, and
then TCP-Fusion adopts either big one as its new congestion
window size. Therefore, TCP-Fusion ensures at least
TCP-Reno performance.

A. Congestion Window Reduction
TCP-Fusion adopts optimization of the decrease parameter

based on TCPW-RE (Rate Estimation) [6] to improve
efficiency particularly in the leaky pipe. In TCPW-RE, the
decrease parameter after a loss can be expressed as RTTmin/RTT
[10], where RTTmin and RTT are the minimum RTT and the RTT
right before the packet loss, respectively. This equation
indicates that TCPW-RE reduces its congestion window size to
clear the buffer and, as a result, it is friendly to TCP-Reno only
if the buffer capacity is equal to the BDP [10, 17] where RTT
grows up to 2*RTTmin. If the buffer capacity is larger than the
BDP, the decrease value is less than 1/2 upon a congestion loss
(Fig, 1) and TCPW-RE cannot obtain a share of the bandwidth.
To address this issue, we then set the thresholds to 1/2 as
follows;

)
2

 ,max(min last
lastnew

cwnd
cwnd

RTT
RTT

cwnd =

where cwndnew, and cwndlast are congestion window sizes right
after and before the packet loss, respectively.

B. Congestion Window Increase
Similar to TCP-Vegas, TCP-Fusion has three phases;

increase phase, decrease phase, and steady phase, which are
switched by a number of packets in the bottleneck queue (diff).
The diff can be estimated as;

RTT
RTTRTT

cwnddiff
)(min−

=

If the diff is less than the lower bound threshold, the link is
determined as underutilized, and its congestion window size is
increased rapidly to fill the pipe size. If the diff is larger than the
upper bound threshold, the link is determined as utilized and
early congestion, and its congestion window size is decreased
to the value that has at least the lower bound threshold in the
bottleneck queue. Otherwise, the link is determined in a good
balance and non-congestion condition, and its congestion
window size is fixed. Fig. 2 shows the congestion window
behavior of TCP-Fusion when TCP-Fusion and TCP-Reno are
competing with a buffer size less than BDP.

cwndrenocwndcwndreno
cwnd

diffcwnddiffcwnd
diffcwndWcwnd

cwnd

new

last

lastlast

lastinclast

new

_ if ,_cwnd
 otherwise ,

*3 if ,/)(
 if ,/

new <=








>+−+

<+

=

αα
α

where cwndnew, cwndlast and reno_cwnd are the congestion
window sizes after and before update and of an equivalent to
TCP-Reno, respectively. α is the lower bound threshold to
switch three phases. Winc is the increment parameter to increase
congestion window size rapidly. With regard to α and Winc, we
will discuss in detail in the next subsection.

C. Setting Parameters
Setting the threshold parameter α has a big impact on the

performance of our proposal. We first consider next two
requirements for the parameter setting:

1) Considering friendliness to TCP-Reno, it should be a
small value to minimize the queuing delay that affects
coexisting TCP-Reno flow. However, if α is too small
compared to the link bandwidth, it becomes meaningless due to
TCP timer granularity (diff is always larger than α except the
case of RTT=RTTmin). As a result, three phases of TCP-Fusion
cannot be switched adequately. Therefore α should be
proportional to the link bandwidth.

2) When there are coexisting N TCP-Fusion flows, since
each flow will try to put α packets into the bottleneck buffer, the
router buffer size has to accommodate at least N*α packets. If
the router buffer size is less than the value, the parameter diff
never goes up to α. This means that all TCP-Fusion flows
always increase their congestion window sizes aggressively,
and results in unneeded frequent buffer overflows. Therefore, α
should be set to a small value according to the number of
coexisting TCP-Fusion flows.

To satisfy these requirements mentioned above, we start with
an assumption that no routers have smaller than G packets that
corresponds to the queuing delay Dmin in the bottleneck queue.
Thus, G is given by

Sizepacket
DB

G
_*8

* min=

where B is the bandwidth of bottleneck link. In the worst case
that all coexisting N flows employ TCP-Fusion algorithm, since
the total packets (N*α) is equal to G packets, α can be expressed
by G/N. Although it is hard to know the bottleneck link
bandwidth B and the coexisting number of flows N accurately,

2/maxcwnd

RTT
RTTcwnd min

max

maxcwnd

Time

Congestion window

reno_cwnd

cwnd

 Fig. 2: Congestion window behavior

RTTmin 2*RTTmin
RTT

TCP-Fusion
1

1/2
TCP-WestwoodR

ed
uc

tio
n

fa
ct

or

RTTmax

ARENO

 Fig. 1: Reduction factor

 33

we can approximate the value B/N by achieved rate estimation
as follows:

8*_
*

8*_
*)/(minmin

sizepacket
DRE

sizepacket
DNB

N
G

≈==α

where RE is the achieved rate estimation governed by TCPW-
RE (Rate Estimation) scheme. By setting this value, α scales up
to the link capacity (Requirement 1), and becomes a small value
in inverse proportion to the number of coexisting TCP-Fusion
flows (Requirement 2). Furthermore, since the achieved rate
RE is equivalent to cwnd/RTT, α can be expressed by

RTT
D

cwnd
sizepacket

DRE minmin

8*_
*

==α

 This equation means that accuracy of the parameter α is
limited by the TCP timer granularity (tcp_tick) of which value
depends on operating system. We can set Dmin= tcp_tick or
higher value to absorb slight oscillations of the RTTs in
dynamic network conditions. In this paper, while our
simulation experiments showed that Dmin=tcp_tick is
controllable enough, we set it to 4ms based on our
implementation experiments as of now.

Secondly, we set Winc according to our assumption that no
routers have smaller than G packets. In TCP-Fusion, even if its
congestion window size reaches the BDP, since RTT doesn’t
change from RTTmin yet and thus the network is recognized as
underutilized, the congestion window size is increased by Winc.
Accordingly, if Winc is set to more than G packets, packet losses
are caused at the time on our assumption. Thus, Winc is upper
bounded by

sizepacket
DB

GWinc _*8
*

 min=≤

where B is the bandwidth estimation achieved by time sequence
of ACKed sequence numbers like TCPW-BE. By this way, its
increment parameter can scale up to the link bandwidth. While
we can set Dmin to 4ms as with α mentioned above, our
simulation experiments show that Dmin=1ms is reasonable value
even in high-speed networks. When we assume Dmin=1ms and
1500B packet size, we have Winc=B/12Mbps.

III. PERFORMANCE EVALUATIONS
We carried out extensive simulations using ns-2 simulator

[18] and implementation experiments on a Linux system to
verify TCP-Fusion properties. In our implementation
experiments, we newly implemented TCP-Fusion, ARENO and
CTCP as Linux modules (Kernel 2.6.15), and tested six TCP

variants; TCP-Fusion, ARENO, CTCP, HSTCP, BIC and
CUBIC. In this paper, we mainly introduce implementation
results inside our laboratory and on an actual network
experiments. We omit a lot of simulation results which support
implementation results in this paper due to page limitation.
Instead, we only show a few simulation results that cannot be
evaluated in our current implementation environments. The
parameter β is set to 12Mbps.

A. Laboratory Experiments
The network topology is shown in Fig. 3. The bandwidth,

round-trip propagation delay and buffer size are illustrated in
this figure. The 500KB of buffer size is equal to the BDP of
setting 40ms RTT. For a traffic source, we use Iperf[19] to
generate continuous TCP data flow.

1) Efficiency and Friendliness in lossy link
Fig. 4 shows the throughput of a single TCP flow. For the

network emulator setting, RTT is 40ms and random packet loss
rate is varied from 10-1 to 10-6. All kinds of TCP variant flows
can utilize nearly the link bandwidth when the loss rate is
smaller than 10-5 and degrade its throughput as the loss rate
increases. Among of them, TCP-Fusion is most efficient and
robust in this lossy link. For example, TCP-Fusion can obtain

Receiver 1
CPU：Pentium4 2.4GHz

Memory: 512Mbyte
NIC: 100base-T

Sender 1
CPU：Pentium4 2.4GHz

Memory: 512Mbyte
NIC: 100base-T

Network Emulator
Link Bandwidth：100Mbps

RTT：40ms-80ms
Buffer capacity：500Kbyte

Sender 2
CPU：Pentium4 3GHz

Memory: 1Gbyte
NIC: 100base-T

Receiver 2
CPU：Athlon XP 3000+

Memory: 512Mbyte
NIC: 100base-T

Receiver 1
CPU：Pentium4 2.4GHz

Memory: 512Mbyte
NIC: 100base-T

Sender 1
CPU：Pentium4 2.4GHz

Memory: 512Mbyte
NIC: 100base-T

Network Emulator
Link Bandwidth：100Mbps

RTT：40ms-80ms
Buffer capacity：500Kbyte

Sender 2
CPU：Pentium4 3GHz

Memory: 1Gbyte
NIC: 100base-T

Receiver 2
CPU：Athlon XP 3000+

Memory: 512Mbyte
NIC: 100base-T

Fig. 3: Network model in laboratory

 0

 20

 40

 60

 80

 100

10^-6 10^-5 10^-4 10^-3 10^-2 10^-1

Th
ro

ug
hp

ut
 [M

bp
s]

Ranadom packet loss rate

TCP-Fusion
ARENO

CTCP
HSTCP

BIC
CUBIC

TCP-Reno

Fig. 4: Throughput of a single flow with different loss rate

 0

 20

 40

 60

 80

 100

10^-6 10^-5 10^-4 10^-3 10^-2 10^-1

Th
ro

ug
hp

ut
 [M

bp
s]

Ranadom packet loss rate

TCP-Fusion
Reno(+Fusion)

ARENO
Reno(+ARENO)

CTCP
Reno(+CTCP)

Fig. 5: Throughput of coexisting two flows with different

loss rate (the cases of Fusion/ARENO/CTCP)

 0

 20

 40

 60

 80

 100

10^-6 10^-5 10^-4 10^-3 10^-2 10^-1

Th
ro

ug
hp

ut
 [M

bp
s]

Ranadom packet loss rate

HSTCP
Reno(+HSTCP)

BIC
Reno(+BIC)

CUBIC
Reno(+CUBIC)

Fig. 6: Throughput of coexisting two flows with different

loss rate (the cases of HSTCP/BIC/CUBIC)

 34

up to 1.4 times of ARENO throughput in Fig. 4. This is because
RTTmax of ARENO, as the loss rate increases, becomes less than
2*RTTmin due to reduction of congestion losses. In such cases,
the reduction factor upon a packet loss of ARENO is less than
those of TCPW or TCP-Fusion as shown in Fig. 1.

We then evaluate the friendliness in lossy link. In this
experiment, TCP variants and TCP-Reno flows are competing.
Fig. 5 and Fig. 6 present the results of TCP-Fusion/ARENO/
CTCP and HSTCP/BIC/CUBIC, respectively. If the loss rate is
smaller than 10-5, TCP-Reno flow can obtain fair share
(50Mbps) of the link bandwidth. Therefore, TCP variant flow
should have the same bandwidth to coexisting TCP-Reno flow
until the loss rate is 10-5, and after that, utilizes the residual
capacity left unused by the TCP-Reno flow. In Fig. 5, we can
see that TCP-Fusion, ARENO and CTCP flows have
approximately the same bandwidth to the TCP-Reno flow until
the loss rate is 10-5. After that, when the loss rate increases, they
can obtain more than fair share by utilizing the residual capacity.
In this experiment again, TCP-Fusion can obtain the highest
throughput. On the other hand, HSTCP, BIC and CUBIC
deteriorate coexisting TCP-Reno flow throughput to much less
than fair share when the loss rate is small in Fig. 6.

2) Friendliness among TCP variants
In this experiment, we evaluate the friendliness when two

TCP variant flows are competing. Previously, the target for
evaluation of the friendliness is argued only for TCP-Reno.
However, on the present situation where BIC is implemented in
Linux by default and CTCP will be implemented in Windows
Vista, we anticipate several TCP variants will be competing in
the future Internet. Accordingly, for TCP variants, the
friendliness to other TCP variants as well as TCP-Reno
becomes one of the important concerns.

The experimental result is shown in Table 1. This table
means that, for example, when TCP-Fusion and ARENO are
competing, TCP-Fusion flow throughput is 46.0Mbps and

ARENO is 44.0Mbps. We can see through this experiment that
TCP variants with high friendliness such as TCP-Fusion,
ARENO and CTCP have almost the same bandwidth without
critical impacts with each other. By contrast, BIC and CUBIC
flows deteriorate the other TCP variants and even HSTCP
throughput. TCP variants flows coexisting with BIC or CUBIC
flow have no chance to increase its congestion window quickly
because BIC or CUBIC flow grows its congestion window
regardless of its available capacity.

B. Actual Network Experiments
We prepared two actual network lines as shown in Fig. 7;

Tokyo-Honjyo line (Route 1) and Tokyo-Kitakyushu line
(Route 2). These two lines are the part of backbone networks of
Waseda University. Their link characteristics are illustrated in
this figure. To avoid the influence of unexpected background
traffic, the throughput presented below is the average of several
trials.

1) Fairness among identical flows in Route 1
We first evaluate the fairness when three identical TCP

variant flows are competing. The additional RTT at network
emulator is set to 80ms. No additional packet loss rate is
introduced. The first, second and third flows start at 0s, 50s and
100s, respectively. Fig. 8 shows the congestion window
behavior of each TCP variant case. The results show that all
kinds of TCP variants except HSTCP behave almost fairly.
HSTCP shows slow convergence with heavy oscillation. Their
throughputs of the first, second and third flows are 51.07Mbps,

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

TCP-Fusion

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

TCP-Fusion

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

HSTCP

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

HSTCP

0

 200

 400

 600

 800

1000

0 100 200 300 400 00 600

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

ARENO

0

 200

 400

 600

 800

1000

0 100 200 300 400 00 600

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

ARENO

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

CTCP

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

CTCP

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

BIC

0

 200

 400

 600

 800

 1000

C
on

ge
st

io
n

w
in

do
w

Flow-1
Flow-2
Flow-3

BIC

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

C
on

ge
st

io
n

w
in

do
w

Time [s]

Flow-1
Flow-2
Flow-3

CUBIC

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

C
on

ge
st

io
n

w
in

do
w

Time [s]

Flow-1
Flow-2
Flow-3

CUBIC

Fig. 8: Congestion window behavior;
three identical flows are competing in Route 1

Table 1: Throughput of coexisting two TCP variant flows
Reno Fusion ARENO CTCP HSTCP BIC CUBIC

Reno 44.9 40.2 42.4 38.6 10.3 10.4 18.6
Fusion 50.0 43.6 46.0 43.0 21.1 11.4 18.7

ARENO 40.5 44.0 43.2 38.0 16.5 12.2 19.4
CTCP 53.9 46.5 50.5 44.9 20.8 13.8 15.0

HSTCP 78.2 61.4 68.2 65.8 43.2 29.9 29.7
BIC 81.2 79.0 78.0 76.2 59.7 44.8 45.4

CUBIC 71.7 70.3 68.4 74.0 59.6 43.9 44.3

Network Emulator

Link bandwidth: 100Mbps
RTT: 2ms 6hops Distance: 80Km

Link bandwidth: 30Mbps
RTT: 20ms 7hops Distance: 900Km

Route 1

Route 2

ReceiverSender

Fig. 7: Actual network lines

 35

28.69Mbps and 16.54Mbps, respectively. Likewise, in
TCP-Fusion, their throughputs are 36.62Mbps, 31.15Mbps and
33.45Mbps, respectively.

2) Fairness with different RTT flows in Route 1
In this experiment, two identical TCP variant flows are

competing with different RTT by using the network emulator.
One is short-RTT flow with 20ms RTT and the other is
long-RTT flow with 20ms, 60ms or 120ms RTT. Fig. 9 shows
the throughput ratio of the short-RTT flow to the long-RTT
flow. Although the longer RTT flow gets smaller bandwidth as
TCP nature in all TCP variants, especially HSTCP suffers from
unfairness. TCP-Fusion, ARENO and CTCP have almost the
same ratio as TCP-Reno. This is because their architectures are
designed to cause the congestion loss by TCP-Reno like
window control to ensure friendliness to TCP-Reno. For a
cyclic behavior of TCP, since its window size just before a
congestion loss is one of the determining factors of its flow
throughput, their RTT fairness are almost same as TCP-Reno.
On the other hand, CUBIC performs most fairly. This is the
specific property of CUBIC whose window control uses
elapsed time since the last congestion event.

3) Friendliness in Route 2
For the last actual network experiment, we test the

friendliness when TCP-Reno and TCP variants are competing
in Route 2 with small BDP. Its BDP is estimated to around 50
packets. Note that we could confirm that the single flow of all
protocols can achieve the link bandwidth, as is not shown in this
paper. Fig. 10 shows the each throughput of all cases. All TCP
variants perform in the same manner, namely share fairly with
TCP-Reno. In such a low-speed network or small BDP network,
TCP variants enter their TCP-Reno mode triggered by the
congestion window size, the period between two consecutive

loss events or the congestion level estimation based on RTT.

C. Simulation Experiments
In this subsection, we introduce some simulation results that

cannot be evaluated in our current implementation experiments;
high-speed networks more than 100Mbps and multi-bottleneck
links with/without reverse traffic. In simulation experiments,
we added FAST to TCP variants team of implementation
experiments. All results are obtained using ns-2 simulator [18].

1) Efficiency and Friendliness in high-speed networks
We evaluate the efficiency and friendliness when TCP-Reno

and TCP variants flows are competing in high-speed network.
The network model is a simple dumb-bell topology such as Fig.
3. The bandwidth and the delay of access links are 1Gbps and
1ms, respectively. The bandwidth and the delay of bottleneck
link are 100Mbps, 300Mbps, 600Mbps or 1Gbps and 20ms,
respectively. The random packet loss rate at bottleneck link is
set to 10-5. The router buffer capacity is set to BDP of each
experiment and the router buffers employ Taildrop discipline.

Fig. 11 shows the utilization ratio of bandwidth share of each
flow. In this figure, the throughput in the case with competing
two TCP-Reno flows is also shown at rightmost in each case.
The goal in this experiment is coordination with TCP-Reno as
well as link utilization improvement. TCP variant flow should
not get bandwidth in return of the throughput reduction of the
coexisting TCP-Reno flow. TCP-Fusion, ARENO and CTCP
perform friendly even in high-speed networks. The utilization
ratio of the coexisting TCP-Reno flow is almost the same ratio
as those of two TCP-Reno flows competing case. Among of
them, TCP-Fusion can also achieve the highest utilization ratio.
HSTCP and BIC get more bandwidth by stunting TCP-Reno
flow. By contrast, FAST cannot get fair share at 100Mbps,
which is too friendly.

2) Fairness in complex links
For the last experiments in this paper, we evaluate the

fairness in multi-bottleneck links. The network model is the
parking lot topology as shown in Fig. 12. The bandwidth and
delay of each link are illustrated in this figure. The router buffer
capacity is set to BDP of the longest RTT flow, and the router
buffers employ Taildrop discipline. In this experiment, there
are a total of six flows, three TCP variants and three TCP-Reno,
with three different hop counts; S1-S4, S2-S4 and S3-S4, in
forward direction. There are also each four TCP-Reno flows on
the ACK return path; S5-S6, S6-S7 and S7-S8, respectively, to

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Li
nk

 U
til

iz
at

io
n

Fusion
ARENO
CTCP
HSTCP
BIC
CUBIC
FAST
Reno

100Mbps 300Mbps 600Mbps 1Gbps
Fig. 11: Throughput when competing TCP variant and
TCP-Reno for different link bandwidth (10-5 loss rate)

0
2
4
6
8

10
12
14
16

Fusion/
Reno

ARENO/
Reno

CTCP/
Reno

HSTCP/
Reno

BIC/
Reno

CUBIC/
Reno

Reno/
Reno

Th
ro

ug
hp

ut
 [M

bp
s]

TCP variant TCP-Reno

Fig. 10: Throughput when TCP variant and

TCP-Reno are competing in Route 2

0

2

4

6

8

10

12

1:1 1:3 1:6
RTT ratio

Sh
or

t-R
TT

 fl
ow

/L
on

g-
R

TT
 fl

ow
th

ro
ug

hp
ut

 ra
tio

TCP-Fusion
ARENO
CTCP
HSTCP
BIC
CUBIC
Reno

0

2

4

6

8

10

12

1:1 1:3 1:6
RTT ratio

Sh
or

t-R
TT

 fl
ow

/L
on

g-
R

TT
 fl

ow
th

ro
ug

hp
ut

 ra
tio

TCP-Fusion
ARENO
CTCP
HSTCP
BIC
CUBIC
Reno

Fig. 9: Throughput ratio of two flows

with different RTT in Route 1

 36

verify the effect of reverse traffic.
Fig. 13 shows the throughput of each flow without/with

reverse traffic at left and right side. Reno1 (2 and 3) and
Variant1 (2 and 3) represent TCP-Reno and TCP variant flows
with one (two and three) hop counts, respectively. The total
throughput means the link utilization of R3-R4, which is the
shared link of all forward path flows. Further, to visualize the
fairness among different hop counts or different RTT flows,
their throughputs are divided into each hop counts flows in this
figure.

Whereas all protocols fully utilize the bandwidth in the case
without reverse traffic, those of the case with reverse traffic are
underutilized. This is because TCP flows experience the
number of timeout or retransmission in the presence of the
reverse traffic [15]. TCP-Fusion, ARENO and CTCP can also
perform friendly to TCP-Reno even in multi-bottleneck links
with/without reverse traffic.

We then point out another observation that is the fairness
among different hop counts flows or different RTT flows
with/without reverse traffic. While their fairness among
different RTT flows are not very enough in the absence of
reverse traffic, those of the cases in the presence of the reverse
traffic are comparatively favorable. Especially the flows with
two hop counts get larger throughputs in return for reduction of
one hop counts flow throughputs. We suppose that the flows
having the most bandwidth share come under the more
influence of the cross traffic such as reverse traffic, which
results in improving the fairness. We will carry out further
investigation of this problem as future works.

IV. CONCLUSION
In this paper, we present a new hybrid congestion control

algorithm, called TCP-Fusion. This protocol integrates three
characteristics; TCP-Reno, TCP-Vegas and TCP-Westwood,
which provides good balance between efficiency and

friendliness even in high-speed networks with large bandwidth-
delay product and non-negligible random packet losses. Our
implementation and simulation results show that TCP-Fusion
can achieve the highest throughput in existing protocols.
Moreover, when a TCP-Fusion flow competes with a TCP-
Reno flow, it can obtain more than fair share when there is
unused residual capacity otherwise, it shares the same
bandwidth to coexisting flows. We also emphasize that the
fairness among TCP-Fusion flows is almost same as that of
TCP-Reno.

As future work, our first job is more investigation to
optimally choose a parameter such as Dmin. Moreover, we are
planning more extensive implementation experiments over
high-speed networks with multi-bottleneck links and more
realistic network environment with short-lived flows and
reverse traffic.

ACKNOWLEDGEMENT
The authors would like to thank Prof. Goto and Prof.

Kameyama, Waseda University, Japan, for their help in setting
up the actual network experiments.

REFERENCES
[1] W. Richard Stevens: "TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms," IETF RFC 2581, 1997.
[2] Janey C, Hoe: “Improving the Start-up Behavior of a Congestion Control

Scheme for TCP,” In Proc. of ACM SIGCOMM 1996, August 1996.
[3] S.Floyd: “Highspeed TCP for Large Congestion Window”, IETF

RFC3649, 2003.
[4] Tom Kelly: “Scalable TCP: Improving Performance in High-speed Wide

Area Networks.” In PFLDnet 2003.
[5] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang: "TCP

Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links", In proc. of ACM Mobicom 2001.

[6] R. Wang, M. Valla, M.Y. Sanadidi, B. K. F. Ng, and M. Gerla:
"Efficiency/Friendliness Tradeoffs in TCP Westwood", Seventh IEEE
Symposium on Computers and Communications, 2002.

[7] L.S. Brakmo and L.L. Perterson: “TCP Vegas: End-to-End Congestion
Avoidance on a Global Internet,” IEEE Journal on Selected Areas in
Communication, Vol. 13, Nov. 8, 1995.

[8] Cheng Jin, David X. Wei and Steven H. Low: “FAST TCP: motivation,
architecture, algorithms, performance”, In proc. of INFOCOM 2004.

[9] H. Shimonishi, T. Hama and T. Murase: “TCP-Adaptive Reno for
Improving Efficiency-Friendliness Tradeoffs of TCP Congestion Control
Algorithm”, In proc. of PFLDnet 2006.

[10] H. Shimonishi, M. Y. Sanadidi, and M. Gerla: “Improving Efficiency-
Friendliness Tradeoffs of TCP in Wired-Wireless Combined Networks”,
In proc. of ICC, 2005.

[11] K. Tokuda, G. Hasegawa and M. Murata: “Performance analysis of
HighSpeed TCP and its improvement for high throughput and fairness
against TCP Reno connections”, in Proc. of HSN 2003.

[12] R. King, R. Baraniuk and R. Riedi: “TCP-Africa: An Adaptive and Fair
Rapid Increase Rule for Scalable TCP”, In Proc. of INFOCOM 2005.

[13] K. Tan. J. Song, Q. Zhang, and M. Sridharan: “Compound TCP: A
Scalable and TCP-Friendly Congestion Control for High-speed
Networks”, in Proc of PFLDnet 2006.

[14] L. Xu, K. Harfoush and I. Rhee: “Binary Increase Congestion Control for
Fast, Long Distance Networks”, in Proc of INFOCOM 2004.

[15] S. Mascolo and F. Vacirca: “The effect of reverse traffic on the
performance of new TCP congestion control algorithms”, in Proc of
PFLDnet 2006.

[16] I. Rhee and L. Xu: “CUBIC: A New TCP-Friendly High-speed TCP
Variant”, in Proc of PFLDnet 2005.

[17] K. Kaneko and J. Katto: “Reno Friendly TCP Westwood based on Router
Buffer Estimation”, in Proc of ICAS/ICNS 2005.

[18] “ns-2 network simulator(ver.2),” http://www.mash.cs.berkley.edu/ns.
[19] “Iperf”, http://dast.nlanr.net/Projects/Iperf/

Fu
si

on

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 [M

bp
s] Reno1

Variant1
Reno2
Variant2
Reno3
Variant3

A
R

EN
O

C
TC

P
H

ST
C

P
B

IC
C

U
B

IC
FA

ST
R

en
o

Fu
si

on
A

R
EN

O
C

TC
P

H
ST

C
P

B
IC

C
U

B
IC

FA
ST

R
en

o

without reverse traffic with reverse traffic

Fig. 13: Throughput of each flow without/with reverse traffic

S1 S2 S3 S4

S5S6S7S8

R1 R2 R3 R4
1Gbps
1ms

300Mbps
10ms

300Mbps
10ms

300Mbps
10ms1Gbps

1ms

Fig. 12: Multi-bottleneck links topology

