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ABSTRACT
In many energy-constrained wireless sensor networks, nodes
cooperatively forward correlated sensed data to data sinks.
In order to reduce the communication cost (e.g. overall en-
ergy) used for data collection, previous works have focused
on specific coding schemes, such as Slepian-Wolf Code or
Explicit Entropy Code. However, the minimum communi-
cation cost under arbitrary coding/routing schemes has not
yet been characterized. In this paper, we consider the prob-
lem of minimizing the total communication cost of a wireless
sensor network with a single sink. We prove that the min-
imum communication cost can be achieved using Slepian-
Wolf Code and Commodity Flow Routing when the link
communication cost is a convex function of link data rate.
Furthermore, we find it useful to introduce a new metric
distance entropy, a generalization of entropy, to character-
ize the data collection limit of networked sources. When the
energy consumption is proportional to the link data rate
(e.g. normally in 802.11), we show that distance entropy
provides a lower bound of the communication cost and can
be achieved by using a specific rate SWC and shortest path
routing. Theoretically, achieving optimality may require
global knowledge of the data correlation structure, which
may not be available in practice. Therefore, we propose a
simple, hierarchical scheme that primarily exploits data cor-
relation between local neighboring nodes. We show that for
several correlation structures and topologies, the communi-
cation cost achieved by this scheme is within a constant fac-
tor of the distance entropy, i.e., it is asymptotically optimal.
Finally, we simulate our algorithm using radar reflectivity
data as well as traces from Gaussian Markov Fields (GMF).
As the network size goes large, for the radar data, we find
our algorithm saves two thirds of the communication cost
compared to a non-coding approach; as for the GMF data,
our algorithm converges to a constant factor (1.5 ∼ 1.8) of
the distance entropy.
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1. INTRODUCTION
In recent years there has been an increasing demand for

the use of wireless sensor networks to measure environments
(such as temperature, humidity, light, and vibration, etc.
[5][12]) and to collect these measurements at a sink. Thus
communication is an important task that must be performed
in order to collect data from sensors. A common character-
istic of these networks, however, is that they are energy-
constrained, and thus the communication cost (e.g. overall
energy consumption) must be considered in the design of
data collection schemes.

Since sensor measurements are often highly correlated,
minimizing the overall communication cost is a joint cod-
ing/routing problem: routing is required because the source
data needs to be shipped through a network to the sink;
coding can be used to take advantage of the source correla-
tion and any other known distributional information. Sev-
eral algorithms based on specific codes have been proposed
to minimize the communication cost of wireless sensor net-
works with a single sink [10][26][14]. When coding is re-

stricted to Explicit Entropy Code (EEC)1 [10], Cristescu
et al. [10] shows that choosing the optimal routes is a
NP-hard problem; Pattem et al. [26] proposes a heuris-
tic algorithm to minimize the communication cost assum-
ing a simplified source model. When coding is restricted to

1For EEC, a node sends out data with a rate equal to the
joint entropy rate of incoming data and its own sensed data.



a Splepian-Wolf Code (SWC) [29]2 and Commodity Flow
Routing (CFR) is used, Cristescu et al.’s work [10] [11] finds
that Shortest Path Routing (SPR) combined with an opti-
mal rate SWC achieves the minimum communication cost
among such schemes. However, in the general case where
arbitrary coding/routing operations are allowed, it is still
not known what the minimum communication cost is, and
how to achieve it. By arbitrary coding/routing operations,
we mean that a node can perform arbitrary transformations
(functions) on the incoming data and local sensed data.

In this paper, we consider the problem of minimizing the
total communication cost over all coding/routing schemes,
as well as designing algorithms to achieve it in practice for
data communication networks with a single sink (i.e., data
collection point). Our work focuses on wireless sensor net-
works with energy constraints, while the general results ap-
ply to wired network (Internet) in which packet delay and
bandwidth consumption are typical cost metrics [21] [31].

Theoretically, we prove that, for a wireless sensor network
with a single sink, the optimal scheme using only Slepian-
Wolf Coding and Commodity Flow Routing is optimal over
the class of all possible coding/routing schemes, as long as
the energy consumption is a convex function of link data
rate. Since this result is based on arbitrary coding/routing
schemes that incorporate Network Coding (NC) [3], a corol-
lary of our result is that, for correlated data collection at a
single sink, NC can not further improve the minimum com-
munication cost achieved by SWC+CFR. Furthermore, we
find it useful to introduce a new metric distance entropy to
lower bound the minimum communication cost. Distance
entropy can be viewed as a generalization of entropy that
summarizes a probability distribution while also taking into
account the underlying network topology. When the en-
ergy consumption is proportional to the link data rate (e.g.
normally in 802.11), we show that distance entropy can be
achieved by a coding scheme using SWC and Shortest Path
Routing (SPR). Last, we extend our results to networks that
incorporate broadcast channels. We show that broadcasting
does not help in terms of minimizing the total communica-
tion cost for the single sink case data collection problems.

For data networks with a single sink, our result shows that
the SWC+CFR scheme achieves the minimum communica-
tion cost. However, in practice, the minimum communica-
tion cost is still difficult to achieve due to several reasons.
First, knowledge of the global data correlation structure,
which is essential for optimal SWC scheme, is normally un-
available or too costly to learn. Specifically, multidimen-
sional entropy estimation is an extremely costly task due to
the curse of dimensionality [4]. Second, SWC [29] is an exis-
tential rather than constructive result, even if the correlation
knowledge is available through an oracle, hardly any general
practical SWC schemes have been developed [31] [1]. In an-
other mostly studied coding scheme, EEC, it was shown in
[10] that it is NP-hard to minimize the communication cost,
the coding complexity of EEC is also comparable to SWC.

Practically, we design a simple and effective algorithm
that achieves (at least asymptotically) the optimal commu-
nication cost for several generic and commonly used classes

2SWC is a distributed source coding technique that allows
the sensor nodes to encode without explicit communication.
Each sensor encodes its data to some rate with the joint rate
vector in the achievable Slepian-Wolf region.

of source models. This algorithm only relies on the source
data correlation between local neighboring nodes. The source
models include a Hard Continuity Field model, a Linear
Variance Continuity Field model and a Gaussian Markov
Field model. We provide nontrivial lower bounds on the dis-
tance entropy of these source models for a 2D sensor grid.
We then propose a simple hierarchical data collection algo-
rithm and demonstrate that it is asymptotically optimal for
these source models, i.e., it achieves a communication cost
that is within a constant factor of our lower bound on the
corresponding distance entropy. We also extend the grid re-
sults to corresponding high probability results for randomly
deployed sensor networks. We evaluate our algorithm by
simulations using 2D radar reflectivity data and a simulated
Gaussian Markov Field. We demonstrate that our algo-
rithms reduce communication cost about two thirds com-
pared to a non-coding raw data collecting method (even for
medium size network) and within a constant factor around
1.5 ∼ 1.8 of the distance entropy of the GMF data.

The paper is organized as follows: In Section 2, we in-
troduce the background and related work. In Section 3, we
formalize the model. In Section 4, we define distance en-
tropy and prove the universal optimal results. In Section
5, we propose the simple hierarchical data collection scheme
and prove its asymptotic optimality. In Section 6, we eval-
uate the performance of our algorithm through simulations.
Finally, we conclude and discuss future work in Section 7.

2. BACKGROUND AND RELATED WORK
2.1 Background

There has been considerable interest in applying informa-
tion theory to data networks recently. By doing so, the tra-
ditional routing problems become joint coding/routing op-
timization problems. In general, Coding consists of Source
Coding (SC) and Network Coding. And by routing, we mean
the traditional commodity flow routing, where messages can
be forwarded, split and merged but not decoded or recoded.
With these clarifications, by arbitrarily coding and routing
operations we mean any combination of SC, NC and rout-

ing3.
There are two aspects of a joint coding/routing problem,

network combinatorics and information theory: as [2] sum-
marizes, Combinatorics is concerned with packing problems
(e.g. flows) that are constrained by the graph structure. It
grews out of a need to understand the shipment of cargo
in transportation networks and does not capture the sub-
tleties of information transmission. On the other hand, in-
formation theory provides a deep understanding of complex
communication problems over structurally simple channels
but does not yet fully extend to arbitrary graph structures.
An interesting observation is that when we consider a more
general problem by adding the coding elements, the problem
often becomes more tractable. Take the maximum multicast
throughput problem as an example. If we are restricted to
use traditional routing, the problem of maximizing multi-
cast throughput is NP-hard while when network coding is
allowed it can be solved using linear programming[19]. For
our problem, if the coding part is fixed to be EEC, the rout-
ing optimization is related to a multiple travels salesman
problem that is NP-hard [10]. However, when arbitrary

3Note that these operations could be inseparable.



coding is allowed, combining ideas from both theories of
combinatorial optimization and information theory enables
us to make significant progress towards understanding the
performance limit of such information networks.

2.2 Related work
There has been much research on Distributed Source Cod-

ing (DSC) and NC. A thorough review of DSC can be found
in [31] where it is claimed that there are still few practical
DSC schemes for general source models. [6] proposes a prac-
tical SWC scheme based on syndromes. It uses a Hamming
distance constraint model so the result can be generalized
to a hierarchical scheme applicable to such hard constraint
models. There is no spatial or cost consideration in [6]. For
NC, if there is just a single sink in addition to independent
sources, there is no need for Network Coding. [18] shows
that traditional routing where data is treated as commodity
flows suffices to solve the data collection problem for such
networks. [28] studies the problem of separating SC from NC
for collecting data from correlated sources at multiple sinks.
They show that the case of 2 sources and 2 sinks is always
separable, and give counter-examples for some other cases.
Since inseparable NC and SC implies that NC is necessary
(not vice versa), we do know that there are cases where NC
is needed. Thus further work is needed to determine the util-
ity of NC in our situation. [16] shows that random linear
network coding suffices for the network coding of correlated
sources. [30] provides a practical low complexity scheme of
joint DSC and NC. The scheme is suboptimal and focuses on
two sources that are related by a binary symmetric channel.
Most of these works on coding apply only to some limited
source models, furthermore they all focus on the capacity
aspect and ignore costs.

Some work has considered network costs; [22] studies the
problem of network coding with a cost criterion. For min-
imum cost correlated data gathering, [14] considers an ab-
stract cost function and a special source model where the
joint entropy is a concave function of the number of sources
and independent of the source locations. They show that
there exists a random approximation of a transmission tree
that is universally optimal for all concave cost functions.
[26] also studies correlated sensor data collection on a grid.
They use a simplified cost function as well as a simplified
correlation model that ignores spatial features as in [14]: the
joint entropy is a linear function of the number of sources.
Thus their discovery of optimal clustering size is consistent
with [14]’s general result. Most of these works use simpli-
fied abstract source models and assume a given coding algo-
rithm with certain output rates available. Our work, on the
other hand, imposes no restrictions on the source correlation
model and the coding algorithm.

In order to study the asymptotic behavior of data collect-
ing sensor nets, [24] studies the scaling problem of a large
number sensors deployed in a Gaussian Markov Field (GMF)
by comparing the per node capacity and node data rate
asymptotically. [11] compares SWC and EEC’s asymptotic
performance on a 1D grid and shows under various condi-
tions that EEC performs asymptotically as well as SWC,
which will show to be asymptotically optimal under these
conditions. [13] investigates the problem of joint optimiza-
tion of sensor nodes deployment and data gathering cost in
a lossy setting. Most these works assume a Gaussian source
distribution. Our practical design targets a more general

class of source models that are representative of real spatial
data. Of particular interest to us, [26]’s experience equation
learned from real rainfall spatial data verifies the validity
of the total entropy assumption in our generic source mod-
elling. [17] models spatially correlated sources using real
spatial data. Their model also falls within our model frame-
work of LVCF and GMF thus further supports the generality
of LVCF and GMF.

3. MODEL FORMULATION

Figure 1: A Layout of the General Problem of Gath-
ering Correlated Data through a Network

We consider a network composed of both source nodes and
pure relaying nodes (As shown in Figure 1). For simplicity
of representation, we assume all the nodes are source nodes
and represent a N + 1-node network as a graph G = (V, E)
(directed or undirected), in which V = {v1, . . . , vN , t} is the
set of nodes, and E is the set of edges. Here t is the sink.
All nodes in V are able to code and transmit data. An edge
e = (vi, vj) ∈ E iff there is a direct communication link
between node vi and node vj .

Each node vi periodically measures a continuous random

source Xi and generate a discrete random source X̂i(e.g.

quatization). The joint source vector X̂ = {X̂1, . . . , X̂N}
is characterized by a joint probability distribution p(X̂1 =

x̂1, . . . , X̂N = x̂N ) = p(x̂1, x̂2, ..., x̂N ). Let {X̂(τ)}∞τ=1 be a

stationary random process where X̂(τ) = (X̂1(τ), . . . , X̂N (τ))
is a field sample that corresponds to the set of samples gath-
ered from all sources at time-slot τ , τ = 1, 2, . . . is the time
stamp in second. For simplicity of presentation, assume that

X̂(τ) is i.i.d. as we focus on the spatial correlation while our
results can be extended to the general case of collecting mul-
tiple field samples that are temporally correlated.

Each edge (link) (vi, vj) = e ∈ E has capacity cij > 0 (or
ce), specifying the maximal transmission rate over the link.
Link (vi, vj) has an associated weight wij ≥ 0 (or we) that
relates to its communication cost. Let re be the data rate
along edge e in bits per second. Naturally, the communi-
cation cost rate (both transmitting and receiving cost per
second) along edge e, g(re, we) is a strictly increasing func-

tion of re and we [11].4 In practice, if a node uses a fixed
transmission power (as the normal mode of 802.11), then

4The data rate and the cost rate can be dynamic and
changes all the time, we use the average cost rate of the
network as the performance metric.



the communication cost rate is a linear function of the data
rate. i.e., g(re, we) = re · we [11]. For this linear cost func-
tion, we corresponds to the communication cost per bit. For
wireless communication links, wij = lij

α where 2 ≤ α ≤ 4
depends on the medium and lij is the Euclidean distance
between nodes vi and vj . If the protocol allows nodes to
adjust the transmission power, then g is not linear but in
general a convex function of data rate. We study both cases
of cost functions. Given the edge weights w, we use Wi to
denote the sum of the weights of edges on the shortest path
from vi to sink t. We assume that the communication links
are implemented as discrete memoryless channels.5 We fist

derive our results based on point to point links (channels)6

then extend it to include broadcast links. We also omit the
negligible communication overhead induced by scheduling
and routing control since data can be packed in arbitrarily
large packets.

We define source graph GX = (G, w, c, X̂) to be the net-
work along with its link costs, capacities and source descrip-
tions. A Communication Scheme specifies, for all the nodes,
“what to send to whom”. It is a set of functions that maps
each node’s received bits and local generated data (if any)
to its output bits and the corresponding selected channels.
A Data Collection Scheme (DCS) Υ is a communication
scheme that allows the network to collect all of the data
x̂1, x̂2, . . . , x̂N at the sink t near losslessly - decode loss-
lessly with zero or an arbitrarily small error probability [8].
A SWC scheme Υ

SW C
is a DCS that only uses Slepian-Wolf

source codes at the sources coupled with commodity flow
routing. A SWC-SP scheme Υ

SW C−SP
is a SWC scheme

that only uses shortest path commodity flow routing. Let
Π, Π

SW C
, Π

SW C−SP
be the set of all DCSs, the set of

all SWC schemes and the set of all SWC-SP schemes, cor-
respondingly.

The cost rate for any data collection scheme Υ on a source
graph GX is defined as WΥ(GX) =

∑

e∈E g(re, we), or sim-

ply denoted as WΥ. W.l.o.g., we assume the field samples
are generated every second, thus WΥ also equals the cost per
field sample. In this paper, our goal is to identify and achieve
the minimum communication cost WΥ∗ = minΥ∈Π WΥ.

4. OPTIMAL DATA COLLECTION SCHEME
In this section we prove our optimality result. We intro-

duce a new concept, the Distance Entropy of a source graph
GX , to characterize the spatial distribution of its source in-
formation. Then in Theorem 1, we prove that distance en-
tropy can be achieved by SWC plus shortest path routing.
Next, for more general convex cost functions, we prove the
universal optimality of the SWC scheme in Theorem 3 based
on Theorem 2 and Lemma 1. Finally, we extend the op-
timality result to networks that include broadcast channels
in Theorem 4. W.l.o.g., we assume the nodes v1, v2, . . . , vN

are in a nondecreasing order of shortest path weight to the
sink, i.e., W1 ≤W2 ≤ ... ≤WN .

Definition 1. For any source graph GX , The Distance

5A memoryless channel is one that, given the input of cur-
rent time slot, the output of current time slot is independent
of inputs of previous time slot.
6Normally there is an underlying MAC layer to solve the
wireless contention problem using techniques like TDMA,
FDMA, ALOHA, etc.

Entropy Hw(GX) is

Hw(GX) =
N

∑

j=1

Wj ×H(X̂j |X̂j−1, ..., X̂1)

Consider the cost function g(re, we) = re · we. We have
the following theorem describing the total communication
cost to collect one field sample.

Theorem 1. The cost of any DCS Υ on a source graph
GX to collect one field sample is lower bounded by the dis-
tance entropy of GX

min
Υ∈Π

WΥ(GX) ≥ Hw(GX).

In the absence of capacity constraints, a SWC-SP scheme

with an optimal rates allocation rj = H(X̂j |X̂j−1, ..., X̂1)
achieves the cost of Hw(GX). Thus

min
Υ∈Π

SW C−SP

WΥ(GX) = Hw(GX).

Proof. See technical report [20]. The idea of the proof
is to first group nodes into a sequence of sets according to
their shortest path weights to the sink, and then investigate
the information flow across the cuts between adjacent sets
in an equivalent constructed graph. This differs from [10]’s
proof and is a more general result. [10] fixes the coding part
and shows that for SWC schemes finding the optimal rate
(the network combinatorial part) is a Linear Programming
problem. Since we have no limitations on coding, our proof
is more general applying to arbitrary schemes.

Theorem 1 shows that distance entropy is a lower bound
on the total communication cost. Furthermore, it shows
that if there are no capacity constraints (this is often rea-
sonable when the data rates are far less than the capacities),
distance entropy is an achievable tight bound and thus the
best possible performance for such data collection tasks.

For more general cost functions and networks with or
without capacity constraints, we are able to derive a more
general result with the help of Han’s work, [15]. Han [15]
shows the necessary and sufficient condition for the achiev-
able capacity region of a communication network of memo-
ryless channels by exploiting the polymatroidal property of
the network capacity function and co-polymatroidal prop-
erty of the joint conditional entropy functions of the corre-
lated sources. We convert this result to our source graph
model and generalize their network topology assumptions
as well. [15] models a communication network as a directed
graph consisting of a set of sources and a set of relays s.t.
there is no incoming edges to any of the source nodes. Re-
placing min-cut capacity in [15] with cut capacity and be-
cause the max-flow min-cut theorem for network flows also
applies to an undirected graph, we generalize [15]’s model to
any directed/undirected source graph where a source node
can have incoming edges.

Before we state Theorem 2, we introduce concept of cut
capacity. For any graph G, ∀M ⊆ V, M c = V \M (t ∈M c)
defines a cut, denoted as (M, M c). Define the set for all
possible cuts as Λ. Let C(M, M c) =

∑

vi∈M,vj∈Mc cij be the

capacity of cut (M, M c). ∀L ⊆ V , let X̂L = {X̂i|vi ∈ L},
X̂c

L = {X̂i|vi ∈ Lc}. We also define a feasible set of flows

as a set of f1, f2, . . . , fN that maps each source X̂i to a



flow rate fi such that there exists a set of commodity flows
(fractional allowed) from the sources to the sink such that
the capacity constraints and flow conservation are satisfied.

Theorem 2. (Generalized version of Theorem 3.1 and
Lemma 2.3 in Han1980 [15]) For any source graph GX

(directed or undirected) with an edge capacity set C, there
exists a data collection scheme iff

H(X̂M |X̂c
M ) ≤ C(M, M c), ∀(M, Mc) ∈ Λ.

When this holds, there exists a SWC scheme and a corre-
sponding nonnegative real vector R = (r1, r2, ..., rN ) for the
SWC’s rates such that for any cut (M, M c)

H(X̂M |X̂c
M ) ≤

∑

vi∈M

ri ≤ C(M, Mc).

Furthermore, there exists a set of flows from the source
nodes V \ {t} to the sink t with fi = ri.

This theorem can be derived by applying the same tech-
nique as [15] to our source graph setting. Using Theorem
2 we will derive a general result on the optimal cost of a
source graph. However, we first derive a Lemma and intro-
duce some further definitions.

For any source graph GX and a DCS Υ operating on it, let
the average transmission rate from vi to vj on edge (vi, vj)
be r(i,j). For any cut (M, M c), the average bit rate under

Υ that crosses the cut is rM (Υ) =
∑

vi∈M,vj∈Mc r(i,j).

Lemma 1. For any source graph GX with or without
capacity constraints and any DCS Υ operating on it, Υ’s
data rate across any cut rM (Υ) satisfies

rM (Υ) ≥ H(X̂M |X̂c
M )

Proof. We prove this by contradiction using Theorem
2. Assume the lemma is not true, then there exists a GX

and DCS Υ that for some cut (M, M c) of G, rM (Υ) <

H(X̂M |X̂c
M ).

The total number of edges from M to M c on which Υ has
traffic is finite and we denote it as lm. Let

ε =
H(X̂M |X̂c

M )− rM (Υ)

2 lm
, (1)

then ε > 0. Construct a directed graph G′(V, E′) with the
same vertex set as G. Regardless of whether G is undirected
or directed, there is a directed edge (vi, vj) in G′ iff there is
traffic routed from node vi to vj by Υ. Also the edge has the
same weight wij as in G. Assign each edge in G′ a capacity
of c′ij = r(i,j) + ε. Then for every edge in G′, c′ij > r(i,j).
Since we also know all rates below the channel capacity are
achievable from the Channel Coding Theorem [8], Υ also

makes a valid DCS in G′
X . However, the cut capacity of

(M, Mc) in G′ is C′(M, Mc) =
∑

vi∈M,vj∈Mc(r(i,j) + ε) =

rM (Υ) + lm · ε. By (1), we have

C′(M, Mc) =
H(X̂M |X̂c

M ) + rM (Υ)

2
< H(X̂M |X̂c

M ).

When the cut capacities of G′
X do not satisfy the iff condi-

tion of Theorem 2, there exist no DCSs in G′
X . This contra-

dicts the fact that Υ is a DCS in G′
X . So the assumption is

incorrect and the lemma is true.

Any DCS can be thought of as dividing the data on a link
into blocks that each has a fixed transmission rate. Thus the
traffic generated by Υ on an edge (vi, vj) can be character-

ized as [(r1
(i,j), τ

1
(i,j)), (r

2
(i,j), τ

2
(i,j)), . . . , (r

Kij

(i,j), τ
Kij

(i,j))], where

rk
(i,j) > 0 is the rate in bits per second for the kth block and

τk
(i,j) > 0 is the corresponding transmission period. Here

Kij ∈ {1, 2, . . . , +∞}. The average rate by Υ along an edge

(vi, vj) from vi to vj is r(i,j) = 1
∑Ki,j

k=1
τk
(i,j)

∑Ki,j

k=1 rk
(i,j) ·τk

(i,j).

For edge e, denote τe =
∑Ke

k=1 τk
e and λk

e = τk
e /τe ∈ (0, 1],

then
∑Ke

k=1 λk
e = 1 and re =

∑Ke

k=1 rk
e · λk

e .

Theorem 3. Let GX be an arbitrary source graph with
or without capacity constraints. Let the cost function g be
nondecreasing in w and r and convex in r, then the opti-
mal SWC scheme is also optimal over the class of all data
collection schemes.

min
Υ∈Π

WΥ(GX) = min
Υ∈Π

SW C

WΥ(GX).

Proof. The proof consists of showing that, for any data
collection scheme Υ, there exists at least one SWC scheme
that has a communication cost no greater than that of Υ.
The trick is to treat the actual transmission rate generated
by Υ on each link as a capacity constraint on that link for
the SWC scheme.

As in Lemma 1, construct a directed graph G′(V, E′)
with the same vertex set as G. Regardless of whether G is
undirected or directed, there is a directed edge (vi, vj) with

unchanged weight wij in G′ iff there is traffic routed from
node vi to vj by Υ. We treat {r(i,j)}s as capacities of the

directed edges in G′ i.e. c′ij = r(i,j) ≤ cij for (vi, vj) ∈ E′

and C ′(M, Mc) = rM (Υ) ≤ C(M, M c) for any cut (M, M c);

by Lemma 1 we also have rM (Υ) ≥ H(X̂M |X̂c
M ). So for any

cut (M, M c),

H(X̂M |X̂c
M ) ≤ C′(M, Mc) ≤ C(M, M c). (2)

(2) matches the iff condition of Theorem 2. Consequently

there exists a SWC scheme with a SWC rate vector R′ =
(r′1, r

′
2, . . . , r′N ) that satisfies H(X̂M |X̂c

M ) ≤ ∑

vi∈M r′i ≤
C′(M, Mc) for any cut (M, M c), and there exists a set of

flows F = (f1, f2, . . . , fN ) from V \ {t} to t in G′. For each
vi, the flow magnitude is fi = r′i. Since R′ is in the Slepian-
Wolf achievable rate region [7] and the flow magnitudes sat-
isfy the capacity constraints, the set of flows combined with
the channel code and SWC defines a SWC scheme in G′,
which is automatically a SWC scheme in G since the traf-
fic of any DCS Υ′ in G′ is upper bounded by G′’s capacity
which is Υ’s data rates, which are further bounded by G’s
capacity, then Υ′’s rates are less than G’s capacities corre-

spondingly.7

The communication cost per second of this SWC scheme

is the cost of the flows W (F ) =
∑

e∈E′ g(
∑N

i=1 fi(e), we),

where fi(e) is the flow rate of vi along edge e. With the

capacity constraint, we have
∑N

i=1 fi(e) ≤ c′e. Since g is

7An alternative way of understanding this is to view the
channels in G′ as the same channels in G with all or part
out of all the time divisions usable.



nondecreasing, we conclude

W (F ) ≤
∑

e∈E′

g(c′e, we) (3)

On the other hand, by the convexity of function g, the
average communication cost per second for Υ satisfies

WΥ ≥
∑

e∈E′

g(re, we)

=
∑

e∈E′

g(c′e, we)

Combined with (3) we have W (F ) ≤WΥ.

4.1 Extension to Broadcast Channels
Previously we ignored the multi-access nature of the wire-

less medium assuming a lower MAC layer to resolve the con-
fliction. Now we consider the case that includes broadcast
channels and show that the previous result remains true
even if we take advantage of the Multi-Access nature of
wireless channels. We use the same source model as before
and a slightly modified communication model to incorpo-
rate broadcast channels. We first describe the communica-
tion model and then show that the minimum communication
costs are the same even with broadcast channels, in other
words, broadcasting does not help.

4.1.1 Communication Model
In addition to the independent point to point channels

assumed before, we allow nodes to broadcast: a node sends
identical data to multiple receiving nodes simultaneously
through a broadcast channel. Let N (vi) = {vj |(vi, vj) ∈ E}
be the neighbor set of node vi—the set of nodes that vi

can communicate directly to via a point to point channel.
Broadcasting here means vi can send the same copy of data
simultaneously at a rate r to any subset of its neighbor set
B ⊂ N (vi). The energy cost gi,B(r) of broadcasting is no
less than the cost of sending at the same rate from vi to any
of the nodes in B through a point to point channel:

gi,B(r) ≥ max
vj∈B

g(r, wij).

This assumption is valid for both applications using direc-
tional antennas and ones using omni-directional antennas

for the point to point channels.8 Now the capacity con-
straint is not on the independent links but rather on nodes.
Each node vi has a joint capacity constraint ci for all of its
outgoing channels: broadcasting and non-broadcasting ones
together. Thus the broadcasting rate r ≤ ci satisfies the
capacity constraint and consumes r of the shared capacity
of vi, equivalently as any of the point to point transmissions
does.

4.1.2 Optimality Result
With the modified communication model, now we refer to

the previously defined DCS that does not use broadcasting
as a “unicast scheme” and still use Π to denote the set of all
unicast schemes; we refer to a DCS that uses broadcast as a
broadcast enabled DCS and denote the set of all broadcast

8For same type of antennas, directional ones consume less
energy than omni-directional ones for point to point com-
munications.

enabled DCSs as ΠB . We show that any source graph GX

whose nodes are enhanced with this broadcast capability has
the same optimal cost as the unicast scheme. We state and
prove the following theorem.

Theorem 4. Let GX be an arbitrary source graph with
or without capacity constraints. Let the cost function g be
nondecreasing in w and r and convex in rate r, then the
optimal SWC unicast scheme is also optimal over the class
of all broadcast enabled data collection schemes.

min
Υ∈ΠB

WΥ(GX) = min
Υ∈Π

SW C

WΥ(GX).

Proof. (Sketch) We prove it by showing that for any
broadcast enhanced data collection scheme Υ in GX , there
exists a SWC scheme that has a cost that is no greater than
Υ and does not use broadcast. We do so by first show-

ing the broadcast reduced rate rB
M (counting the duplicate

data rate only once) across any cut also satisfies the en-
tropy condition of Lemma 1, then constructing a new source

graph GΥ
X based on GX and Υ. The first part of the con-

struction is similar to the one used in the proof of The-
orem 3. The only difference is that for traffic broadcast
by Υ from node vi to a set of its neighbors B, we add
a virtual relaying node (has no sources) vi,B and a set of
directed edges that bridges together vi,B and nodes in B.
Specifically, we add a directed edge (vi, vi,B) with a capac-
ity equal to the original broadcasting rate rB and a directed
edge from vi,B to each node in B with an infinite capac-

ity. Then because rB
M ≥ H(X̂M |X̂c

M ) in GX , it is easy to

verify that for any cut (M, M c) in GΥ
X , the cut capacity sat-

isfies C ′(M, Mc) ≥ H(X̂M |X̂c
M ), by Theorem 3 there exists

a SWC scheme ΥSWC in GΥ
X . If we copy this ΥSWC to GX

by distributing the flow traffic of vi → vi,B → vj directly

as vi → vj , by the construction of GΥ
X , we obtain a non-

broadcasting DCS Υ′ in GX . More than that, because g is
convex and gi,B(rB) ≥ maxvj∈B g(rB , wij) we conclude this

DCS Υ′ in GX is also a unicast DCS with a cost no greater
than the broadcasting enhanced DCS Υ.

We have established both the achievable capacity region
and the minimum communication cost of a source graph.
For collecting multiple correlated sources at a single sink,
the optimal SWC scheme is also an optimal data collection
scheme over all possible DCS. The result is not obvious be-
cause the intermediate nodes are allowed to perform any op-
erations that involve arbitrary couplings of network coding
and source coding. In general, there are possible bandwidth
benefits applying network coding or broadcasting. While
for correlated sources and a single sink, it is first shown here
as a corollary of our work that neither network coding nor
broadcasting helps either in terms of communication cost
or capacity for the most general setting. More than that,
our work shows no coding/routing scheme outperforms the
SWC schemes. Certainly as we mentioned earlier in Section
1 SWC can hardly be considered a practical code and thus
SWC scheme is a theoretical scheme that helps us under-
stand the performance limit of the data collection task.

5. ASYMPTOTICALLY OPTIMAL SCHEME
Given the optimality of the SWC scheme, a natural ques-

tion to ask is how complex do the nodes’ functionalities need



to be in order to achieve the optimal or close to optimal cost,
and how close can a practical algorithm approach the opti-
mal performance? As mentioned in Sec. 1, both SWC and
EEC have practical limitations. Designing practical SWC
schemes has been limited to highly constrained source mod-
els.

In this section, we tackle the tradeoff between commu-
nication cost and node complexity. We describe a simple
data collection scheme, Hierarchical Difference Broadcast-
ing (HDB), for both regular sensor nets on grid points and
random deployed sensor nets. Given the high dimensional
joint compression complexity of SWC and EEC schemes,
HDB does not try to exploit the correlations among all sen-
sor data, but rather tries to leverage off the asymptotically
dominant part of the total information redundancy through
controlled communications. For some naturally constructed
generic spatial correlation models, the neighboring correla-
tion actually dominates the total correlation. We show that
HDB is asymptotically optimal for three generic source mod-
els that are representative of a large class of real spatial data
models.

5.1 General Sensor Grid Model
The grid model for our analysis is based on the general

model described in Sec. 2 but with a special spatial deploy-
ment strategy. A sensor grid is a sensor network where sen-
sors are deployed on a two dimensional square grid. There

are total of N sensors indexed as vi,j , 1 ≤ i, j ≤
√

N ,

i, j = 1, 2, . . . ,
√

N . The location coordinates of sensor vi,j

is µ = l0/2 + (i − 1)l0, ν = l0/2 + (j − 1)l0, where l0 is
the grid cell size (the minimum distance between neighbor-
ing sensors). W.l.o.g. we assume a unit grid where l0 = 1.

Each sensor vi,j has a reading X̂i,j that is a discrete random
variable. The sensor located in the center of the field also
serves as the sink and has a reading X̂t. The sensor read-

ings {X̂i,j} are described by a joint distribution. Denote a

sample of X̂ as x̂ and describe the number of bits used to
encode x̂ by b(x̂).

Sensors are able to communicate with each other if they
are within a certain range. We assume there are no capac-
ity constraints for the communication links. Let g(re, le) =
are · leα be the communication cost function [10], where le
is the Euclidean distance of link e, and a and α are con-
stant parameters with 2 ≤ α ≤ 4. W.l.o.g. let a = 1.
Then the energy cost for transmitting be bits is be · leα.
In this section we focus on the total cost of collecting one
field sample at the sink. Since (l1 + l2)

α ≥ l1
α + l2

α,
the lowest cost path between any two sensors in a grid al-
ways consists of only unit length grid edges. Since there
are no capacity constraints, we can equivalently limit the
transmissions to be along only such shortest paths with-
out affecting the optimal communication cost. Thus we ab-
stract the sensor network as a grid graph G(V, E), E =
{(vi1,j1 , vi2,j2) | |i1 − i2| + |j1 − j2| = 1}. It is easy to see
that the Manhattan distance, η1,2 = |i1− i2|+ |j1− j2| is the
number of hops of any shortest transmission path between
two nodes. We will refer to vi1,j1 as the η1,2 -hop-neighbor of
vi2,j2 and vice versa. When η1,2 = 1, they are each other’s
one-hop-neighbor.

5.2 Hierarchical Difference Broadcasting (HDB)
Before describing HDB scheme, we define a set of hier-

archical clusters. W.l.o.g. let N = 32n, n = 1, 2, . . . where
the sink is node v 3n+1

2
, 3n+1

2
. Let Ω0 = {v 3n+1

2
, 3n+1

2
}. Di-

vide the original 3n × 3n grid into 9 clusters, each a sub-

grid of size 3n−1 × 3n−1, call the set of these subgrids G1.

Let Ω1 = {vi,j |i = 3n−1+1
2

+ k1 · 3n−1, j = 3n−1+1
2

+ k2 ·
3n−1, k1, k2 ∈ {0, 1, 2}} be the set of the 9 center nodes of
these subgrids. Similarly divide each subgrid in G1 into nine

subclusters, each a 3n−2 × 3n−2 subgrid. G2 is the set of all
the subgrids at this level. This can be done recursively, pro-
ducing a set of subgrids Gk at level k with a set of center

nodes Ωk = {vi,j |i = 3n−k+1
2

+ k1 · 3n−k, j = 3n−k+1
2

+ k2 ·
3n−k, k1, k2 ∈ {0, 1, . . . , 3k−1}}, . . .,k = 0, 1, . . . , n−1. Let
Ωn = V \ Ωn−1. It is easy to see Ω0 ⊂ Ω1 ⊂ Ω2 . . . ⊂ Ωn−1

and
⋃n

i=0 Ωi = V .
We design the data collection scheme HDB as following:
Step 1: Sink t ∈ Ω0 broadcasts its observation x̂t using a

Self-Delimiting Code (SDC) [23] over a minimum spanning
tree to all other N−1 nodes in the field. Each sensor updates
its reading by subtracting the received value, x̂i,j ← x̂i,j−x̂t.

Step 2: Do i from 1 to n− 1 {
Each node v ∈ Ωi \ Ωi−1 broadcasts its current

reading x̂v in SDC over a minimum spanning tree
to all the nodes in the corresponding subgrid of Gi.
Receiving sensors update the readings, x̂i,j ← x̂i,j −
x̂v.

} end Do loop
Step 3: All sensors other than the sink send their re-

maining readings x̂v via shortest paths to the sink. The
sink first decodes Ω1’s readings by adding the sink’s value
to the received x̂Ω1 . Then based on the decoded readings
the sink sequentially decodes Ω2, Ω3, . . . , Ωn the readings of
all sensors.

Figure 2: The Hierarchical Broadcasts of HDB

Fig. 2 shows HDB’s hierarchical difference broadcasting.

When N 6= 32n, N ∈ (32n, 32(n+1)) for some n. Expand the

grid to size 32(n+1) × 32(n+1) with the same center. Divide
the expanded grid recursively in the same way, but when a
center node of a subgrid is not in the initial grid, choose the
closest sensor node from the initial grid. This way we can
obtain a sequence of layers Ω0, Ω1, . . . , Ωn for any N .

5.3 Asymptotic Optimality of HDB
Coding in HDB is extremely efficient as it relies only on

simple subtractions and Self-Delimiting Codes. SDC is a
practical code that encodes x̂ into Θ(log x̂) bits with neg-
ligible computation cost [23]. Let the length of the binary



representation of x̂ be q, SDC sends q − 1 zeros (q in unary
code) followed by the binary representation of x̂. For exam-

ple x̂ = 1 will be coded as ‘1′, x̂ = 2 as ‘010′, 4 as ‘00100′. At
the same time, the initialization of HDB is also very simple.
Sensors can easily form the series of clusters in a distributed
and adaptive fashion. The low coding complexity and high
adaptivity of HDB is important for applications of low cost
cheap sensors with limited resources.

Lower bound
We apply Theorem 1 to derive a lower bound on the cost of

the optimal data collection scheme in a sensor grid network.
The result is a lower bound for a general class of correlation
models, capturing the topology impact of grid deployment
on Distance Entropy.

Lemma 2. For any sensor grid of size N that has a

joint entropy H(X̂1, X̂2, . . . , X̂N ) ≥ H(X̂t) + U , U > 0,
if for some nondecreasing order of the sensor’s manhattan

distance to the sink X̂1, X̂2, . . . , X̂N (X̂1 = X̂t) we have

H(X̂i|X̂i−1, X̂i−2, . . . , X̂1) ≤ Ho, ∀i > 1 for some Ho > 0,
then the optimal communication cost is lower bounded by

WΥ∗ ≥ Θ(U
3
2 /Ho

1
2 )

Proof. For a unit grid, W (p∗
X̂j

) = ηj where ηj is the

manhattan distance from X̂j to the sink. By Theorem 1,

Hw(GX̂) =
∑N

j=1 W (p∗
X̂j

)×H(X̂j |X̂j−1, ..., X̂1) =
∑N

j=1 ηj×
H(X̂j |X̂j−1, ..., X̂1) is the optimal communication cost.

Figure 3: The sink’s k-hop-neighbor set layout on
the grid

Denote by Sk = {vi|ηi = k} the k-hop-neighbor set of the
sink. It is easily shown that |Sk| = 4k (see Fig. 3). Since

we have to collect at least H(X̂1, X̂2, . . . , X̂N )−H(X̂t) ≥ U
bits at the sink, if we assign Ho bits to each of the sink’s
neighbors in the order of nondecreasing manhattan distance
(S1, S2, . . . , Sk, . . . ) until N0 = bU/Hoc sensors are filled,

then virtually there is a communication scheme Ũ that col-
lects these U0 = N0 ·Ho ≤ U bits via shortest paths and it
has a cost WŨ .

The optimal SWC scheme Υ∗ has to collect U ≥ U0 bits
from nodes other than the sink and by Theorem 1 the ith

sensor is allocated H(X̂i|X̂i−1, X̂i−2, . . . , X̂1) ≤ Ho bits,
∀i > 1. So for the first N0 sensors, Υ∗ can not allocate

to each sensor more bits than Ũ does. If we order the first
U0 bits collected by Υ∗ in the order of nondecreasing man-
hattan distance, the jth bit of Υ∗ has a manhattan distance

that is no lower than the distance of the jth bit of Ũ . Thus
WΥ∗ ≥WŨ .

Let k∗ be the maximum k that satisfies
∑k

i=1 |Si| ≤ N0.

Since |Si| = 4i, we get k∗ = b
√

2N0+1−1
2

c, and WŨ ≥
Ho ·

∑k∗

i=1 4i · i = 2
3
Hok

∗(k∗ + 1)(2k∗ + 1). Applying k∗ =

b
√

2N0+1−1
2

c and N0 = b U
Ho
c yields WŨ ≥ Θ(U

3
2 /H

1
2
o ). So

we get WΥ∗ ≥WŨ ≥ Θ(U
3
2 /H

1
2
o ).

Upper bounds
The cost of HDB depends on the spatial correlation among

the sensors. In general the correlation exhibits some struc-
ture based on the location of the sensors in the graph. For
networks in a spatial field, often the correlation structure is
a function of its spatial properties. For spatial data, usu-
ally the pairwise correlation is a decaying function of the
distance. Samples at close by points tend to have higher
correlations than those at distant points. This is normally
reflected as smaller value differences for closer points, which
is especially true for a physical field where the measured phe-
nomena is a result of some micro-scale physical process, e.g.
temperature or rainfall distribution. We use three generic
source models to model this feature and show that the sim-
ple HDB is asymptotically optimal for each of them. Denote
the cost of HDB as WH , then there exists a constant c > 0
s.t. WH/WΥ∗ ≤ c.

1) Hard Continuity Field (HCF):

For HCF, X̂i,j is a discrete random variable that has M dif-
ferent possible values. Without loss of generality, we assume
the set for the M values is the integer set {1, 2, . . . , M}.
The difference between the samples from any two one-hop-

neighbors satisfies a ‘hard’ continuity constraint as |X̂1 −
X̂2| ≤ d for some d > 0. We assume d

√
N ≥ Θ(M), this is

easy to satisfy when the network scale N is large.

Lemma 3. If a HCF has a joint entropy H(X̂1, X̂2, . . . , X̂N )

≥ Θ(N · log d) , then HDB has an asymptotically optimal

communication cost as Θ(N
√

N log d), the same order as
the optimal cost W (Υ∗).

Proof. We first give a lower bound on the optimal cost
using Lemma 2 and then demonstrate an upper bound for
WH having the same asymptotic behavior.

d
√

N ≥ Θ(M) ⇒ H(X̂t) ≤ log M ≤ Θ(
√

N · log d) ⇒
H(X̂1, X̂2, . . . , X̂N )−H(X̂t) ≥ Θ(N log d)−Θ(

√
N log d) =

Θ(N log d). Let X̂1, X̂2, . . . , XN be a source sequence in an
order of nondecreasing manhattan distances to the sink (as

shown in Fig. 3) such that each X̂i other than the sink

has a one-hop-neighbor X̂i1 in the sequence with i1 < i.

So H(X̂i|X̂i−1, X̂i−2, . . . , X̂1) ≤ H(X̂i|X̂i1) ≤ log (2d + 1).
Applying Lemma 2 with U = Θ(N log d) and Ho = log (2d + 1)

yields W (Υ∗) ≥ Θ(N
√

N log d).
The same order upper bound can be derived by simple

counting technique, please refer to [20].

The joint entropy assumption of Lemma 3 is a natural
assumption. Here is an example to demonstrate that there
exist HCFs with a Θ(N · log d) order joint entropy. Con-

sider a case that M = 3d
2

and a sensor has uniform con-
ditional distribution based on its neighbor readings, then

H(X̂1, X̂2, . . . , X̂N ) = H(X̂1)+
∑N

i=2 H(X̂i|X̂i−1, ..., X̂1) ≥
log 3d

2
+ (N − 1) log d

2
= Θ(N · log d).



2) Linear Variance Continuity Field (LVCF):
For real sensor data, it is more reasonable to assume a
‘soft’ continuity constraint rather than the ‘hard’ one as
in HCF. Using the same setting as HCF, a Linear Vari-
ance Continuity Field (LVCF) is one where data continu-
ity is modeled as a constraint on the expected data val-
ues. We replace the hard continuity constraint with a ‘soft’
one: any two one-hop-neighbors’ reading difference satisfies

E[(X̂1 − X̂2)
2] ≤ d2, d > 0.

Lemma 4. IF a LVCF has a joint entropy of at least

Θ(N · log d), and V ar(X̂t) ≤ Θ(d
√

N ), then HDB’s expected
communication cost is asymptotically optimal. The optimal

cost W (Υ∗) is lower bounded by Θ(N
√

N log d).

Proof. We use the same method as Lemma 3 to prove
this lemma. The only difference is that here we work with
the expected number of bits and apply information theory
inequalities.

First by [8]

H(X̂) ≤ 1

2
log

[

(2πe)(V ar(X̂) +
1

12
)

]

(4)

We have H(X̂t) ≤ Θ(
√

N log d) thus H(X̂1, X̂2, . . . , X̂N )−
H(X̂t) ≥ Θ(N · log d). For the same sequence of nondecreas-
ing manhattan distance to the sink as in Lemma 3,

H(X̂i|X̂i−1, X̂i−2, . . . , X̂1) ≤ H(X̂i|X̂i1)

= H(X̂i − X̂i1 |X̂i1)

≤ H(X̂i − X̂i1) (5)

Also by [8], H(X̂) ≤ 1
2

log [(2πe)(V ar(X̂) + 1
12

)], since the

variance V ar(X̂i − X̂i1) ≤ E[(X̂i − X̂i1)
2] ≤ d2, we have

H(X̂i − X̂i1) ≤ 1
2

log [(2πe)(d2 + 1
12

)]. Applying Lemma 2

with U = Θ(N log d) and Ho = 1
2

log [(2πe)(d2 + 1
12

)] =

Θ(log d), get W (Υ∗) ≥ Θ(N
√

N log d).

Next we derive the upper bound for WH . First E[(X̂i −
X̂i1)

2] ≤ d2 ⇒ E|X̂i − X̂i1 | ≤ d. Applying the triangle
inequality of an absolute function, any two readings satisfy

E|X̂i − X̂j | ≤ ηi,j · d. Since a self-delimiting code can com-

press any x̂ into b(x̂) = 2(blog |x̂|c + 1) bits [23] and log(x)
is a concave function, by Jensen’s inequality [8],

E(b(X̂)) = 2(Eblog |X̂|c+ 1) ≤ 2(log E|X̂|+ 1) (6)

So E[b(X̂i−X̂j)] ≤ 2(log (ηi,j · d)+1). Also from V ar(X̂t) ≤
Θ(d

√
N ) we have EX̂t ≤ Θ(d

√
N ), by (6) E(b(X̂t)) ≤ Θ(

√
N log d)

and thus replacing the hard bound for the coded bits b(x̂)
of Lemma 3 with a bound on its expected value and ap-
plying the same counting technique, we show E[WH(N)] ≤
Θ[N
√

N log d]. Compared with W (Υ∗) we know that HDB
is asymptotically optimal for such LVCF models.

3) Gaussian-Markov field (GMF):
Multivariate Normal (MVN) is an often used model for mul-
tivariate distributions. Actually MVN is a subset of the
LVCF source model. However, since LVCF is a very general
model and HDB is not optimal for any LVCF model, it is
worth analyzing the optimality conditions of HDB on MVN.
Furthermore, MVN is a good approximation of many appli-
cations while being mathematically tractable. Among all the

possible spatial correlation gaussian structures, Gaussian-
Markov Field (GMF) [9] is a common MVN model to model
spatial fields exhibiting the close-points-high-correlation prop-
erty. Let X1, X2, . . . , XN be N continuous random values
being measured at N different points of a GMF, they follow
a joint MVN distribution: N (µ, Σ). Without loss of gener-
ality we assume the sources have the same mean µ = 0. Σ =

(σ
i,j

)N×N is the covariance matrix with σi,j = σ2 · e−cη
i,j

l0 ,

where c > 0 is a constant and σ2 is the unconditional vari-
ance of a source. The correlation between sensors decays
exponentially as the distance between them goes up. We use
Manhattan distance instead of Euclidean distance because
the former is much more tractable yet is a good approxima-
tion of the latter as our simulation suggests.

Let γ = e−c·l0 , γi,j = γ
η

i,j , then γi,j is the correlation

coefficient between sensor i and j and the covariance matrix

can be written as Σ = σ2 · (γ
i,j

)N×N . Notice 0 < γi,j < 1

for any i 6= j and γi,i = 1 for any i. This avoids the trivial

case of γi,j ≡ 1 when all readings are fully dependent on

each other, in which case the sink’s reading is exactly the
same as that of any other sensor and there is no need for
communication. The other trivial case is when we have in-
dependent readings, γi,j = 0 for all i 6= j, then the problem

reduces to a single source coding problem with no need for
distributed coding.

Each sensor’s reading X̂i is a quantized version of Xi

where each sensor uses the same type uniform scalar quan-
tizer. When the quantization precision is high and thus the

step size ∆ is small, by [8], the entropy of X̂ is approximately
the differential entropy of X minus log ∆. We assume a high

resolution quantizer is used and H(X̂j) = h(Xj) − log ∆,
where h(X) is the differential entropy of X. For any k

sources, H(X̂1, X̂2, . . . , X̂k) = h(X1, X2, . . . , Xk)− k log ∆.

Lemma 5. For any GMF on a k-dimensional hyper-cube

grid of N = mk nodes, the field’s joint entropy

H(X̂1, . . . , X̂N ) =
1

2
log

(

(2πe)
N

σ
2N

(1−γ
2
)
kmk−1(m−1)

)

−N log ∆

The proof can be found in [20].

Corollary 1.

H(X̂1, . . . , X̂N ) ≥
1

2
log

(

(2πe)Nσ2N (1 − γ2)kN

)

− N log ∆

Proof. Just apply the fact γ ∈ (0, 1) to Lemma (5),

get det(Qk) ≥ (1− γ2)kN , by Lemma 5 we prove the corol-
lary. Note that particularly for a 2D grid we have det(Σ2) =

σ2Ndet(Q2) ≥ σ2N (1− γ2)2N .

Theorem 5. For any two dimensional GMF that has

γ ≤ 0.86539 and 1
2

log 2πeσ2

∆
≤
√

NHo, where Ho =

log
√

2πeσ2(1−γ2)
∆

. The expected communication cost of HDB

is asymptotically optimal. The optimal cost W (Υ∗) is lower

bounded by Θ(N
√

NHo).

Proof. The proof uses the same type of technique as the
case for HCF and LVCF, only now we work on the entropy
of gaussian variables.

By Corollary 1,

H(X̂1, . . . , X̂N ) ≥ NHo



also

H(X̂t) =
1

2
log

2πeσ2

∆
≤
√

NHo

so U=H(X̂1, . . . , X̂N )−H(X̂t)≥Θ(NHo).
W.l.o.g. let 1, 2, . . . , N be the same type of nondecreas-

ing manhattan distance order as in the proofs for HCF and
LVCF, since entropy is a lower bound for any codes, the ex-
pected coded bits of SDC is larger than the corresponding

entropy: H(X̂i − X̂i1) ≤ E[b(X̂i − X̂i1)]. By (5),

H(X̂i|X̂i−1, . . . , X̂1) ≤ E[b(X̂i − X̂i1)] (7)

By [27], E[(Xi −Xj)
2] = 2σ2(1 − γi,j ), then E|Xi −Xj | ≤

√

2σ2(1− γi,j ) ⇒ E|X̂i − X̂j | ≤ E|Xi −Xj |/∆ + 1 ≤
√

2σ2(1− γi,j )/∆ + 1, by (6), we have Eb[(X̂i − X̂j)] ≤

2[log(
√

2σ2(1− γi,j )/∆+1)+1]. Also since ∆�
√

σ2(1− γ)

(high resolution quantizer), we get

E[b(X̂i − X̂j)] ≤ (1 + ε) log[8σ2(1− γi,j )/∆2] (8)

ε > 0 is a small constant. Particularly E[b(X̂i − X̂i1)] ≤
(1 + ε) log[8σ2(1− γ)/∆2]. When γ ≤ 0.86539, log[8σ2(1−
γ)/∆2] < 2Ho , thus combined with (7), we have 2(1+ ε)Ho

> H(X̂i|X̂i−1, . . . , X̂1). Applying U and Ho to Lemma 2

yields W (Υ∗) > Θ(N
√

NHo).

At the same time, it follows that E[b(X̂i−X̂j)] ≤ log[8σ2(1−
γi,j )]. Since for any γ ∈ (0, 1),

(1− γi,j ) = (1− γ
η

i,j ) ≤ ηi,j (1− γ)

we have E[b(X̂i − X̂j)] < 2Ho + log ηi,j . Applying the same

counting technique as in Lemma 3 yields the following up-

per bound on HDB cost WH < Θ(N
√

NHo) + Θ(N
√

N) =

Θ(N
√

NHo).

From Theorem 5 we conclude that for large portion of a
GMF grids without too high correlations between the nodes,
HDB is asymptotically optimal. This is intuitively right be-
cause as the correlation coefficient γ → 1 (either c → 0 or
l0 → 0), the field approaches the trivial case of completely
dependent with no need for communications. However, as
long as the field is not anywhere close to this, for a large
range HDB remains asymptotically optimal:γ ≤ 0.86539 as
opposed to the full possible range of (0, 1). Applying Theo-
rem 5 and the same technique, HDB’s asymptotic optimal-
ity can be generalized to high dimensional GMF grid as well
as Gaussian Uniform Field(GUF) which is a multivariate
gaussian field with γi,j = γ for any two nodes. Due to space

limitations, we do not present the details here.

5.4 Non-grid Models
Grid deployment is a good approximation for a large class

of sensor applications where sensors can be deployed in a
regular manner. We also extend the techniques and insights
developed from the grid case to the random deployment case.

1) Deployment Model:
Assume N sensors are uniformly and independently dis-
tributed in a two-dimensional geographical region G. Un-
der this assumption, for large N the sensor locations can

be approximated or modelled as a two-dimensional Pois-
son Point Process (PPP). Let the average sensor density be
ρ = N/|G|(number of sensors per unit area, | · | is the area
function). Let the number of sensors in a region A be N(A);
N(A) follows a Poisson distribution with parameter ρ|A|,

P (N(A) = k) =
e−ρ|A|(ρ|A|)k

k!

The rate of the Poisson process λ is just the density λ = ρ.
There is a single sink in the region to collect all the read-

ings. Each sensor vi’s Euclidean distance to the sink is li.

Let lG = 1
N

∑N
i=1 li be the field’s average distance to the

sink.
2) Communication Cost Model:

We use the same linearly separable communication cost func-

tion g = lαe · be as the grid case. Let lo =
√

|G|
N

= 1√
ρ

be the

average neighbor distance of the sensors. Assume the min-
imum communication cost per bit from a sensor vi to the

sink t is W (p∗
i ) = li

lo
· loα = li · lα−1

o . The minimum per bit

cost between any two sensors vi, vj are W (p∗
i,j) = li,j l

α−1
o

This is a close approximation when N is large, the majority
of the sensors are many hops away from the sink.

3) Source Model:
For the random deployment case, instead of having a one
hop continuity constraint, we have to define a continuity
constraint depending on the distance continuously because
now the one hop distance is not a fixed value as in grid
case. The constraint is modeled appropriately according
to the sensed field being HCF, LVCF or GMF. Here we
use LVCF as an example and it is easy to adjust for the
other two. Assume for any two sensors vi and vj that has
a Euclidean distance li,j , their reading difference satisfies

E[(X̂i − X̂j)
2] ≤ f(li,j) > 0 where f is any nondecreasing

function that maps the distance between two sensors to an
upper bound of their reading differences. We call this model
a Poisson LVCF field or PLV CF .

4) Protocol–RHDB:
We refer to the modified HDB scheme as Random deployed
HDB (RHDB). The modifications are simple: Instead of
dividing the sensors into clusters directly, now we divide
the geometric region uniformly into nine square shape sub-
regions, sensors in the same square are clustered together,
then further divide each cluster into sub-regions of 1

9
size.

Division stops when it is the size of a region 3cεlo×3cεlo (cε

is some constant) or there are no sensors in it. Choose the
sensor closest to the geometric center of the subregion as its
cluster head. Then we have the following Theorem.

Theorem 6. For a PLVCF field, if there exists a pair of
constants ε > 0 and 0 < δ < 1 such that the field has a joint

entropy H(X̂1, X̂2, . . . , X̂N ) ≥ Θ[N ·log f(cεlo)], V ar(X̂t) ≤

Θ

[(

f(cεlo)

)

√
N]

where cε =
√

(1+ε)

(1−δ)( 2π
3

−
√

3
2

)
, also log f(x)

is a concave function and η
G

= Θ(
√

Nlo), then RHDB is
asymptotically optimal for the expected total communica-
tion cost w.h.p.(with high probability). And w.h.p. the opti-

mal cost W (Υ∗) is lower bounded by Θ[N
√

Nlαo log f(cεlo)].

The proof of Theorem (6) uses several randomized tech-
niques including Chernoff bound, Chebyshev’s Inequality [25]
and is quite involved, we refer the reader to [20].



6. PERFORMANCE EVALUATION
In this section we evaluate our HDB scheme using two

data sets: a 2D radar reflectivity data set generated by a
weather simulating/forecasting tool ARPS [32], and a syn-
thetic data set generated by a Gaussian Markov Field model.
We ignore the radar data’s temporal correlations and focus
on HDB’s performance on reducing its spatial redundancy.
Nevertheless, we point out that it is not hard to generalize
HDB to deal with temporal correlation as well. For both
data sets, we use a 2D square grid and place the sink at the
center.

The 2D radar data set is formatted as a 43 × 43 grid
covering a region of about 41 square kilometers. We eval-
uate our HDB algorithm assuming the data is collected by
a corresponding sensor grid network with unit cell size (the
absolute cell length does not influence the ratio of one hop
cost per bit for different schemes). Since we expect most
spatial data to share some form of the continuity feature de-
scribed by LVCF defined earlier, HDB’s performance trend
based on radar data should apply to spatial data collected
in other ad-hoc sensor networks. Since we are interested in
the large network performance of HDB, we also ignore the
asymptotically diminishing routing&scheduling overhead to
focus on the asymptotically dominating part of the cost.

For the radar data, Figure 4 shows that the communica-
tion cost ratio between our HDB scheme and a non-coding
raw scheme (RAW). RAW sends some fixed number bits
from each node to the sink following a shortest path. Com-
pared to RAW, HDB saves approximately 2/3 of the com-
munication cost. 316 different snapshots of the field are
used to estimate the average cost for HDB and RAW. Since
there are no good spatial models for the radar data and non-
parametric multidimensional entropy estimation is difficult
[4], we are unable to compare HDB’s cost to the distance en-
tropy (optimal). Nevertheless, our simulation demonstrates
HDB’s improvement and trend vs. RAW.

 0.5

 1

 1.5

 2

 2.5

 3

 0  200  400  600  800  1000 1200 1400 1600 1800 2000
N

RA
W

/H
DB

Figure 4: The communication cost ratio of RAW to
HDB for radar data set

In order to further evaluate the performance of HDB, by
comparing it to RAW and distance entropy (OPT), we turn
to a synthetic data set that is generated by Gaussian Markov
Field model. We set the mean of the field as 250 and vari-
ance σ2 = 5625. The 2D grid is composed of N sensors

(
√

N ×
√

N) with grid cell size one. γ1 = 0.9999 is set by
the correlation coefficient between one hop neighbor nodes
estimated from the radar data.

We are interested in the asymptotic behavior as N →
∞ for fixed density network topology in which the cell size

is constant (we set the size to one). Note that in a fixed
density topology, since the cell size is fixed, the correlation
coefficient between one hop neighbors γ1 is fixed as well.
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Figure 5: The communication cost ratio of RAW to
OPT, and HDB to OPT for data set generated by
Gaussian Markov Field.

Figure 5 shows the performance ratios of HDB/OPT and
RAW/OPT for a fixed density network as N increases. We
see that the ratios HDB/OPT and RAW/OPT both ap-
proach a constant as N increases. This result matches well
the asymptotically optimal result given by Theorem 5. Note
that in the simulation we use Euclidean distance instead of
Manhattan distance for the correlation decaying which is
more realistic. When the curves converge, the constant ra-
tio between RAW, OPT and HDB can be explained as fol-
lows: RAW sends all source data without any coding; OPT
reduces data using full knowledge of data correlation; HDB
reduces data based on only local data correlation. The con-
stant ratio between RAW, OPT and HDB shows the ratio of
communication cost when using no correlation information,
complete correlation information, and local correlation in-
formation. In this example, by exploiting local neighboring
correlation, HDB approaches about one third of the commu-
nication cost of RAW, and achieves about 1.5 times of the
OPT communication cost. Note in the radar case, HDB also
approaches one third of RAW’s cost and both cases have the
same one hop correlation coefficient.

From Figure 5, we also see that HDB/OPT decreases as
N increases. This is because in HDB, the communication
cost (step 1 and step 2 of HDB) to obtain the side informa-
tion from neighboring nodes is asymptotically dominated by
the communication cost of sending the remaining data af-

ter compression (Θ(N3/2)) (step 3 of HDB): as N → ∞,
the communication cost for obtaining neighborhood side in-
formation becomes more and more negligible compared to
that for sending the data. Thus, the ratio of HDB/OPT
decreases accordingly.

For fixed density topology, our about results show that by
exploiting local data correlation, our HDB algorithm sub-
stantially reduces the communication cost, and achieves the
asymptotically optimality with small constant factor.

7. CONCLUSION AND FUTURE WORK
Our main contributions are summarized as follows:

• We show that, for a single sink data network, the
Slepian-Wolf Code and Commodity Flow Routing can
achieve the minimum communication cost even if ar-
bitrary coding/routing scheme is allowed.



• We propose a new metric distance entropy, a general-
ization of entropy, to characterize the “spatial” infor-
mation distribution in a weighted graph (abstraction
of the communication network).

• We design a simple and effective algorithm that ex-
ploits local data correlation to achieve an asymptoti-
cally optimal performance for some generic classes of
source models.

• We further evaluate our algorithm with 2D radar re-
flectivity data and a simulated Gaussian Markov Field
model. Result demonstrates that our HDB algorithm
substantially reduces the communication cost and also
achieves the asymptotically optimality with small con-
stant factor.

Future research can be pursued in the following directions:
further evaluating HDB algorithm on more data correlation
models; implementing our distributed algorithm in an en-
ergy constrained wireless sensor network; solving the gen-
eral multi-sink lossy correlated data collection problem, this
is quite challenging.
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