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Abstract. Techniques for global register allocation via graph coloring
have been extensively studied and widely implemented in compiler frame-
works. This paper examines a particular variant – the Callahan Koblenz
allocator – and compares it to the Chaitin-Briggs graph coloring register
allocator. Both algorithms were published in the 1990’s, yet the academic
literature does not contain an assessment of the Callahan-Koblenz alloca-
tor. This paper evaluates and contrasts the allocation decisions made by
both algorithms. In particular, we focus on two key differences between
the allocators:
Spill code: The Callahan-Koblenz allocator attempts to minimize the
effect of spill code by using program structure to guide allocation and
spill code placement. We evaluate the impact of this strategy on allocated
code.
Copy elimination: Effective register-to-register copy removal is impor-
tant for producing good code. The allocators use different techniques to
eliminate these copies. We compare the mechanisms and provide insights
into the relative performance of the contrasting techniques.
The Callahan-Koblenz allocator may potentially insert extra branches as
part of the allocation process. We also measure the performance overhead
due to these branches.

1 Introduction

While processor speed has increased dramatically in the last 20 years, main
memory speeds have struggled to keep up. To address this disparity, current
computer architectures contain several levels of smaller but faster storage in be-
tween main memory and the processor. Consequently, modern compilers must
ensure that frequently used values in a program are stored in the higher ech-
elons of this memory hierarchy. In particular, registers are the fastest storage
locations and compilers run a register allocation phase to map values in the pro-
gram to registers available on the target architecture. This phase is critical in
producing a speedy program. However, it is prohibitively expensive to optimally
conduct global register allocation since the problem is NP-complete [18]. As a
result, allocation is usually performed by a heuristic driven algorithm. Our pa-
per will focus on two such algorithms – the Chaitin-Briggs allocator [5] and the



Callahan-Koblenz hierarchical allocator [6] – that map the register allocation
problem to a graph coloring problem. Both algorithms construct and color an
interference graph that represents correctness constraints. As can be expected,
optimal coloring of the interference graph is also NP-complete and the allocators
resort to heuristics to color the graph.

The major difference in the two allocators lies in their consideration of pro-
gram structure. After constructing the interference graph, Chaitin-Briggs does
not consider the control flow of the program. In contrast, the Callahan-Koblenz
algorithm constructs a hierarchy of tiles to capture loops and conditional con-
trol flow in the program. This tile representation of the program is then used to
guide allocation and spill decisions. We shall analyze the impact of these locality-
based decisions on the quality of generated code. Another key difference in the
two allocators lies in their register-to-register copy removal techniques. The re-
moval of unnecessary register copies is an integral part of both algorithms. While
the Chaitin-Briggs algorithm conducts copy coalescing to eliminate redundant
copies, Callahan-Koblenz uses a preferencing technique which is a mechanism
that influences the way certain nodes are colored. We shall compare the effec-
tiveness of the two techniques on various benchmarks.

The Chaitin-Briggs allocator has been investigated extensively, and is imple-
mented in practically every industrial and research compiler. In contrast, while
the original Callahan-Koblenz article presents a fascinating approach and makes
compelling arguments about its functionality, the authors did not present an
experimental evaluation. In particular, they described a relatively high-level de-
scription of the algorithm and did not provide a comparison to a high-quality
baseline allocator. If the Citeseer literature database is any indication, there has
been wide interest in the Callahan-Koblenz article – it has been cited almost as
frequently as the well-known Briggs paper [5]. However, even after more than
a decade since its publication, there still has been no evaluation published in
the literature. This is unfortunate since industrial practitioners, in particular,
are necessarily conservative about implementing unproven or poorly-understood
algorithms in their compilers. This is especially true in the case of the Callahan-
Koblenz algorithm, which, as will be seen in the following sections, is signif-
icantly more complicated than the proven, easy to implement Chaitin-Briggs
allocator. This paper intends to address this gap in the literature and to pro-
vide researchers and practitioners with empirical data about the performance of
this intriguing algorithm. Because Callahan-Koblenz is considered an extension
to graph-coloring techniques, we used Chaitin-Briggs – a well-understood graph
coloring algorithm – as the baseline of comparison.

2 Graph Coloring Register Allocation

Register allocators typically take an intermediate representation of a program
as input. This representation does not impose any architectural limitations on
the number of registers – values are contained in locations known as virtual
registers. It is the allocator’s responsibility to map the theoretically unlimited
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virtual registers into a finite number of machine (or physical) registers. More-
over, while conducting this mapping, it needs to maintain the semantics of the
program. Graph coloring register allocators construct an interference graph that
represents these safety constraints. Program values are represented by nodes in
the interference graph and edges between nodes imply that those values cannot
share a physical register. Values that cannot share a physical register are said
to interfere with each other. Both the Chaitin-Briggs and Callahan-Koblenz al-
locators construct such an interference graph for each procedure in the program
and then attempt to color it. However, the two graph coloring algorithms use
significantly different techniques to construct and color their interference graphs
and to spill registers. To understand and highlight the impact of these differences
in allocation decisions, we present a summary of the algorithms in the next two
sections.

2.1 Chaitin-Briggs Allocator

As the name suggests, the Chaitin-Briggs allocator (“CB”) is based on Chaitin’s
classical graph coloring allocator. In describing their algorithm, Briggs et al.
identify several major phases in their allocator. Our implementation faithfully
follows the implementation described in the paper except we do not need to
discover and number live ranges (Briggs et. al call this the “Renumber” phase)
since this information is already available in the static single assignment form
(SSA) based representation we use. The major phases, as depicted in Figure 1
and described in [5] are:

calculate

spill costs

Spill code

coalescebuild simplify select

Fig. 1. Overview of the Chaitin-Briggs allocator

Build the Interference Graph: Identify interferences by constructing live ranges
and marking interferences between these ranges.

Coalesce: Remove register-to-register copies if the source and the destination
registers do not interfere. The build and coalesce phases are repeated until no
more coalescing can be conducted. We will provide a detailed analysis of the
effects of coalescing in Section 4.2.

Calculate Spill costs and Simplify: These phases calculate spill costs for every
node in the interference graph and then order the nodes by pushing them on
a stack after removing these nodes from the graph. The Simplify phase first
removes all trivially colorable nodes – i.e. nodes that have fewer neighbors than
than the number of available physical registers. If it reaches the point where
no such node remains in the graph, then this phase consults the spill heuristic,
chooses the node with the lowest spill cost, and pushes that node onto the stack.
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The process is repeated until the graph is empty and all nodes have been placed
on the stack.
Select: The allocator tries to color the graph by repeatedly popping a node from
the stack, inserting it into the graph, and attempting to assign it a color. If all
colors have already been exhausted by its neighbors, then the node is marked
for spilling and left uncolored.
Spill code insertion: If any nodes were marked for spilling by the previous phase,
then the graph was not successfully colored. As a result, spill code is inserted for
those nodes and the allocator is restarted on the modified program. The Briggs
allocator marks nodes to be spilled at a later stage than Chaitin’s algorithm.
The authors call this procedure optimistic coloring since the algorithm defers
the spilling of a node in the hope that the node will become colorable.

2.2 Callahan-Koblenz Allocator

The Callahan-Koblenz allocator (“CK”) extends Chaitin’s allocator by directly
incorporating program structure into the allocation process. By doing so, the al-
locator can decide which variables to spill, as well as determine where to place the
spill code. In contrast to the “spill everywhere” approach of Chaitin, Callahan-
Koblenz has the potential to place spills in less frequently executed portions of
the program.

(a)
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T0.1

T0.1.2

T0.3
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START
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START

(b) (c)

blocks(T0.1.2) = {B}
blocks(T0.1)    = {A, C}
blocks(T0)       = {START, STOP}

blocks(T0.3)    = {D}
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T0.1

T0.1.2

T0.3

Fig. 2. Example tile tree: (a) CFG; (b) tiles overlaid on CFG; (c) the tile tree.

Callahan-Koblenz represents the hierarchical program structure with a tile

tree. Roughly, each tile in the tree represents a region of code such as a loop or
conditional and each pair of tiles in the tree must either be disjoint or properly
nested, one within the other. Such a tree structure isolates the high- and low-
frequency code regions and provides a basis for the allocator’s overall operation
and spill placement decisions. Figure 2 shows an example control-flow graph and
its corresponding tile tree, where the set blocks(T ) represents all basic blocks
which belong to tile T , but not to any subtiles of T . Each tile boundary represents
an implicit split-point of all values live at that boundary. One of the strengths
of Callahan-Koblenz lies in the ability to allocate each portion of a live range
between the tile boundaries independently. These split-points also become the
locations where any necessary spill code for global values will be placed. Figure 3
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depicts the overall structure of the Callahan-Koblenz allocator. Once a tile tree
has been constructed, two major passes are made over the tile tree.

color

(physical registers)

rebuild

(from summary)

summarize

(for subtile)conflicts and  prefs
incorporate parent

spill code
tile−boundary

each tile t in preorder traversal of tile tree

Phase 2

prefs for blocks(t)

build for blocks(t)

each subtile s

(pseudo colors)

color

(for parent)

summarize

conflicts and  prefs
incorporate subtile

each tile t in postorder traversal of tile tree

Phase 1

construct  tile tree

Fig. 3. The Callahan-Koblenz Allocator

Phase 1 (bottom-up): Each tile T is visited in postorder and processed in-
dependently with the goal of producing a preliminary allocation. The overall
processing of each tile is similar to a Chaitin-Briggs allocator, but includes extra
bookkeeping between tiles, and does not perform coalescing.

Build and preferences: Build the interference graph much like Chaitin-Briggs,
but restricting attention to blocks(T ). Moreover, unlike the standard builder,
interferences are not constructed for any variable which is live across, but not
referenced in the subtree rooted at T .1 Preferences (such as for the source and
destinations of copy instructions) are also setup at this time.

Incorporate subtile summaries: All subtiles of T will have already been pro-
cessed, and a compact summary of their allocations stored. This information is
incorporated into T ’s interference graph.

Color: Coloring operates similarly to the Chaitin-Briggs allocator except that
color choice may be influenced by preferences and that color may potentially
be propagated to other nodes. Except for nodes which must receive a particular
physical register, colors assigned in this phase are “pseudo colors” in the sense
that they will be re-colored with a physical register in the second phase.

Summarize: After T is processed, a compressed representation of its’ interference
graph and allocation is constructed and passed up to the parent tile. Included
in the summary are all tile-global variables allocated to registers, all tile-globals
allocated to memory, and tile summary variables. Each TSV corresponds to a
set of tile-local variables that were allocated the same color, so that the local
allocation is represented in a very compact form.

Phase 2 (top-down): Each tile T is visited in preorder with the goal of pro-
viding the final assignment of physical registers. Spill code is introduced at tile
boundaries to reconcile differences in each tile’s allocation.

Rebuild: Reconstruct the interference graph for T from its summary information.

Incorporate parent summaries: Conflicts for LBNRs that were excluded in the
first phase are now added to the graph for consideration, if they received a
register in the parent.

1 Such live ranges, which we abbreviate “LBNR”, are similar to the “delayed bindings”
of [15], or the “inactive” live ranges of [3].
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Color: A final coloring is performed, binding pseudo-colors to physical registers.
As before, coloring decisions are influenced by any preferences.
Summarize: Save T ’s allocation and preference information to be passed down
to its subtiles.
Spill code: Spill code is introduced at the tile boundaries, which may not be the
same tile where a particular spill decision was made.

3 Experimental Setup

For our experimental setup, we used the LLVM compiler infrastructure [14]. We
ran the allocators on an Intel Pentium 4 machine with 1 GB of main memory
running Redhat Linux 9.0. The Pentium 4 processor has 7 allocatable integer
registers and 8 allocatable floating point registers. We selected benchmarks that
performed mostly integer computations, since the current LLVM x86 backend
has limited support for global floating-point register allocation. That is, LLVM
is generally unable to allocate floating-point values across basic blocks due to
complications in handling the stack-based FP register file of x86. As a result, the
allocators were evaluated on programs from the SPEC 2000 integer benchmarks
and one program from the Mediabench suite: epic.

4 Evaluating the Allocators

In evaluating the allocators, we posed and answered two major questions. Since
a critical goal of the CK algorithm is to minimize dynamic memory references
generated by spill code, the primary question that needs to be addressed is to
what extent it improves on the “spill everywhere” approach of Chaitin. Sec-
ond, the CK allocator might place extra operations on tile boundaries while
stitching subtiles back together. We wish to measure this overhead and deter-
mine whether it is tolerable. To this end, our evaluation process consisted of
running both allocators on a number of benchmarks and comparing two key
features of the register-allocated output: the spill instructions emitted and the
register-to-register copies eliminated. We measured both the number of static
spills and copies emitted as well as the number of these instructions executed on
test inputs. We also measured the execution time of the allocated code on these
inputs.

While evaluating the allocators, it is tempting to focus solely on the runtime
of the allocated program. However, this might prove to be misleading on certain
environments due to three issues. First, some architectures (the x86 included)
use sophisticated techniques to minimize memory latency. Thus, even if the
allocation algorithm allocates more virtual registers to physical registers and
reduces the amount of spill code in the program, this improvement might not be
reflected in a decrease in execution time. Second, the effects of cache hits and
misses on spill code is unpredictable and might affect the runtime of the code. In
the degenerate case, code with more spill code might benefit from random cache
effects and execute faster than code with fewer spill instructions. The allocators
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we evaluated do not optimize for cache effects while emitting spill code – as a
result, the impact of cache on allocated code is purely accidental and we would
like to factor these effects out. Lastly, the evaluated allocators might produce
starkly different allocations for rarely executed procedures of a benchmark. This
difference might not be reflected in the execution time of the entire program.
However, it is sometimes instructive to examine the contrasting allocations of
these procedures. Keeping these considerations in mind, we decided on spill code
and register copies eliminated as our two major evaluation metrics. An analysis of
the spills and copies in the code will give us a relatively architecture-independent
understanding of both allocators. In our comparisons, we used both the dynamic
as well as the static versions of these metrics.

4.1 Comparing the Spill Code Emitted by Both Allocators

A graph coloring allocator typically uses heuristics to color the interference graph
using the same number of colors as available physical registers, k. However, the
coloring will be unsuccessful if the graph is not k-colorable, or if the heuristics fail
to color a k-colorable graph. At this point, most allocators modify the program
and repeat the coloring process. After an unsuccessful coloring effort, Chaitin-
Briggs and Callahan-Koblenz relegate uncolorable nodes to memory and rebuild
the interference graph. This process of placing a live range in memory instead of
a register, known as spilling, reduces the length of the live range and, in general,
makes the modified graph more colorable. Since the spilled range must now be
fetched from memory, the allocator tries to reduce the number of these memory
accesses (spills) executed at runtime. Callahan-Koblenz and Chaitin-Briggs use
heuristic techniques to identify candidates for spilling . Though their heuristics
share a general goal – to make the graph more colorable and to minimize the
amount of spill code – they differ in their formulations.
Spill code insertion strategy in Chaitin-Briggs: In the Briggs allocator,
the spill heuristic is computed by counting the load and store instructions re-
quired if the live range were to be spilled. Specifically, if di is the loop depth of
instruction i, the spill cost for a node is estimated to be:

SpillCost = LoadsCost + StoresCost where LoadsCost = LoadWeight ∗
∑

l∈SpillLoads
10dl

StoresCost is calculated in a similar manner. For our experiments, the weights
for load and store costs were set to 1. If a spill is required, the node with the
lowest ratio of spill cost to the number of interference edges is selected for spilling.
Once a live range is spilled in Chaitin-Briggs, it is loaded before a use and stored
after a definition throughout the function.
Spill code insertion strategy in Callahan-Koblenz: A more fine-grained
spill strategy is used by the CK allocator. We give a brief overview here, but
consult [6] for a more detailed discussion. Because live ranges can be split at tile-
boundaries, the allocator may choose to place a variable v in different locations
for each tile that it crosses. For example, v may be allocated to a register within
tile t, while being relegated to memory in the parent or a subtile. The following
set of equations forms the cornerstone of this strategy:

LocalWeightt(v) =
∑

b∈blocks(t)

P (b) · Refb(v)
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where t is a tile, P (x) denotes the probability of executing a block or taking a
control flow edge and Refb(v) is the number of references to v within b. Assuming
that allocating a register to variable v in t is profitable (see below) during the
bottom-up phase, LocalWeightt(v) is analogous to Chaitin-Briggs’ SpillCost
heuristic and is used, along with the degree of the node corresponding to v, in a
similar fashion. However, this cost is computed based only on blocks that occur
strictly within tile t, as opposed to the whole function. Moreover, the reference
count of block b is weighted by the probability of b being executed. Note that
for the purposes of this work, we use a static estimate of P (b) rather than actual
profile data to ensure a fair comparison of the spill heuristics for both allocators.
If b is a block, we set P (b) = 10depth(b). If e is an edge emanating from a block
b, P (e) is computed as the reciprocal of the number of outgoing edges of b.

Weightt(v) =

∑

s∈subtiles(t)

(Regs(v)− Mems(v)) + LocalWeightt(v)

Overall decisions regarding whether or not a variable should be spilled are
based on Weightt(v). It is computed as a combination of LocalWeightt(v) and
various penalty costs that may arise from making certain allocation decisions
with respect to the parent or children of t. It may happen that the penalty
outweighs the benefit of allocating v to a register, indicating that the allocator
should force v into memory.

Transfert(v) =

∑

e∈E(t)

P (e) · Livee(v), where E(t) = EntryEdges(t) ∪ ExitEdges(t).

Regt(v) =

{

0, if InRegt(v) = false

min(Transfert(v), Weightt(v)), if InRegt(v) = true

Memt(v) =

{

0, if InRegt(v) = true

Transfert(v), if InRegt(v) = false

where InRegt(v) is a boolean predicate which is true if v received a register in
tile t, and false otherwise. Livee(v) is a predicate that indicates if variable v is
live along edge e.

Transfert(v), Regt(v), and Memt(v) represent the various penalty costs.
The first corresponds to the cost due to tile-boundary spills, while the remaining
two account for any penalties due to a tile and its parent choosing different
locations for the same live range. If v is allocated to a register in tile t, Regt(v)
is the penalty of allocating v to memory in the parent of t. Likewise, if v is
allocated to memory in tile t, then Memt(v) is the penalty of allocating v to a
register in the parent of t.
Analysis of Spill Code Inserted: Table 1 shows the dynamic spill behav-
ior of each benchmark for CB and CK. The column marked CB is the number
of dynamic memory operations executed by the CB-compiled version of each
benchmark. The CK results are broken down into the three types of spill opera-
tions that can occur. Column M is the number of dynamic memory operations
executed within tile boundaries (e.g., loops). Column MTB and CTB are the
number of dynamic memory and register-to-register copy operations executed
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Benchmark CB CK % imp.
M MTB M + MTB CTB All (w/CTB)

gzip 96.82 51.01 6.09 57.10 0.99 58.09 41.02 40.00
vpr 10.77 8.96 1.12 10.08 0.00 10.08 6.41 6.41
crafty 71.21 55.10 5.07 60.17 0.44 60.61 15.50 14.89
parser 51.54 27.66 1.05 28.71 1.12 29.83 44.30 42.12
eon 36.10 36.30 0.28 36.58 0.00 36.58 -1.33 -1.33
gap 53.02 43.45 4.29 47.74 0.55 48.29 9.96 8.93
bzip2 103.00 72.14 17.80 89.94 2.14 92.08 12.68 10.60
twolf 53.70 31.81 11.96 43.77 1.32 45.09 18.49 16.03
epic 8.78 4.50 6.85 11.35 0.44 11.79 -29.27 -34.23
MEAN IMPROVEMENTS 20.52 19.07

Table 1. Dynamic spill operations for SPECInt2000 and epic (billions)

on tile boundaries, respectively. The two additional CK columns represent the
sum of all dynamic memory operations (M + MTB) and the sum of all dynamic
spill operations (memory operations or copies). It is useful to isolate the different
types of spills for CK in order to see the effects of tiling more directly. Finally,
the last two columns show the percent improvement of CK over CB. In the first
case, only memory operations are considered, whereas memory and copy opera-
tions are considered in the second case. This distinction was made to show how
prevalent any remaining tile-boundary register-register copies were (indicating
success or failure of inter-tile preferencing), and what overall impact they had on
the improvements. Overall, the benchmarks allocated with CK executed signifi-
cantly fewer dynamic spill operations than those allocated by CB— up to 44%
fewer on parser. On average, 20.52% fewer spill operations were executed for
CK than for CB. On the other hand, there were two losses for CK. One slight
loss in eon, and one significant 29.27% loss in epic (more on this later).

We examined some of the benchmarks in detail at the assembly language level
to understand choices made by each allocator, and why CK performed relatively
well compared to CB. Consider the code in Figure 4a, which is a typical scenario
present in many of the benchmarks. Here there are two live ranges x and t

competing for one register, where x is referenced once early, and heavily in some
distant part of the program. There are a only few references to t in a small portion
of the program, but they occur in a loop, making them frequently executed. Let
us assume the total number of references to x exceeds those of t. In the standard
CB scheme, since the spill cost is calculated based on the references throughout
the program, then x would get a color and t would be spilled (as in Figure 4b).
But from the perspective of t, spilling t is a poor choice, since x is never even
referenced in the loop. On the other hand, the opposite choice (giving t the color)
is bad too as the many references to x will now be through memory. Because
CB must spill a live range entirely, one of two poor choices must be made. As
mentioned earlier, CK can consider each live range in fragments, over regions of
the program. Here CK splits x before and after the loop, so that the loop portion
and non-loop portions are allocated independently. This allows the result seen
in Figure 4c, where t gets the register and x gets the register (but x is allocated
to memory within the loop where it has no references). Notice also that there is
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Fig. 4. Example of CK advantage: (a)
original code; (b) CB spills t; (c) CK
splits x.
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a tradeoff in making such a split. A store and a load operation must be placed
at loop entry and exit to make the split, which is clearly profitable here.

Returning to the loss in the epic benchmark, it is useful to examine the
breakdown of spill operation types for CK. The graph in Figure 5 shows the
percentage of total spill operations represented by each type. Looking at the
epic bar, it is evident that something went wrong with CK’s heuristics. That is,
more than half of all the dynamic spill operations are memory operations on the
tile boundaries. Without looking at the code, this would seem indicate that CK
did not calculate trade-offs between intra- and inter-tile spilling appropriately.

In fact, on examining the assembly code, we found just that behavior. One
routine dominating execution time contains a number of triply-nested loops. In
one such nest, there is heavy register pressure in the inner loop, little pressure
in the middle loop, and medium pressure in the outermost loop and non-loop
code. There are also a number of global values live across the entire loop nest,
with references in some loops and not others. Unfortunately, for some of these
globals, the constituent fragments within each loop were alternately allocated
to registers and memory. That is, the outermost loop allocated g to a register,
the next deeper loop allocated g to memory, and the inner loop allocated it to a
register. Thus, at every tile boundary there are memory operations to transfer
g in and out of memory as appropriate. It turns out that these tile-transfers
dominate the spill operation count, as seen in the graph. It would have been
better to keep g in the same location across more than one tile boundary.

4.2 Inter-register Copy Elimination and its Impact on Allocation

Prior research has demonstrated that the removal of register-to-register copies
improves code quality [10, 11]. Therefore, the efficacy of the copy coalescing
phase is critical to the performance of the allocators. An effective copy removal
strategy becomes even more imperative for register allocation in a SSA-based
intermediate representation such as LLVM. While converting from SSA form to
executable code, φ-functions are replaced by register-to-register copies [4]. In
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both implemented allocators, we ran an initial pass that merged the live ranges
created by the φ-node elimination process. This transformation, specified by
Briggs in [3], ensures that the input to the two allocators remained consistent.
The two-address nature of x86 code and copies generated due to procedure-
calling conventions also present many opportunities for copy removal. Since the
two allocators implement different copy-removal mechanisms, we shall compare
this feature in more detail in the next two paragraphs.

Coalescing and Biased Coloring: The Chaitin-Briggs allocator uses two comple-
mentary mechanisms – coalescing and biased coloring – to remove register copies
in the code. After building the graph, if the allocator encounters a register copy,
it coalesces the source and destination live ranges if they do not interfere. This
algorithm is called aggressive coalescing because it combines nodes without ex-
amining the resulting node’s degree. After coalescing, the algorithm rebuilds the
interference graph and repeats the coalesce-rebuild process until no more copies
can be eliminated. In Chaitin-Briggs, coalescing is intentionally constrained – to
retain flexibility during coloring, it only examines copies between two virtual reg-
isters. To eliminate copies between physical and virtual registers, Chaitin-Briggs
adds the color associated with the physical register to a list of colors desired by
the virtual register and attempts to assign this color to the register during the
biased coloring phase. Biased coloring is, in spirit, very similar to preferencing
in the CK allocator. However, unlike in Callahan-Koblenz, biased coloring plays
only a secondary role in Chaitin-Briggs since coalescing is powerful enough to
eliminate most copies.

Preferencing: Preferencing refers to the notion that it may be attractive to assign
the same color to multiple variables By making the coloring algorithm sensitive
to such preferences, the likelihood of choosing the desired color for a node is
increased. Copy removal in the CK allocator is performed by preferencing the
source variable S and destination variable D of a copy together by adding each
to the others preference list. The preference-guided color assignment algorithm
then attempts to give the same color to S and D. If the attempt is successful (the
preference was satisfied), then the resulting copy is redundant and can be trivially
removed. Similarly, if either S or D is a physical register, such as a copy generated
to implement subroutine linkage conventions, we setup a local preference. This
is different than the previous case in that a variable is preferenced to a specific
physical register. During color assignment, when a node receives a color, the color
is propagated to all the nodes on its preference list as their local preference. If
a node has a local preference, then the coloring mechanism will first attempt to
assign that register before resorting to using another register. Furthermore, it
will try to avoid giving a node a color that is preferred by uncolored neighbors.

In addition to copy removal, preferencing is used to influence the colors that
different parts of a global live range receive. Recall that tile boundaries are im-
plicit split-points for variables live at that boundary. Because tiles are processed
independently, it is important to pass around information about these variables
(in the form of preferences) so that each tile attempts to place the same global
into the same register. These preferences, of course, are not generated in response
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to copy instructions. However, if they are not satisfied, then copy operations will
be inserted at the boundary to resolve the differing allocations.

Register Copies in Code After Copy-Elimination: Coalescing/Preferencing
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Fig. 7. Runtime of Allocated Code

Experimental Evaluation: In comparing the copy-removal mechanisms, we wanted
to ensure that our measurements would not be hampered by the inconsistent
namespaces created by both allocators. Therefore, we modified CB and CK
to operate on the same structure – we constructed a single tile for the entire
program and provided this tile as input to the allocators. The results of our
experiments are displayed in Figure 6 – it shows the number of copies remain-
ing in the code after copy-removal was conducted. Our experiments show that
overall, coalescing used in conjunction with biased coloring performs better and
removes 3.6% more copies on average than preferencing. This translates into a
4.5% decrease in copies executed at runtime. We were, however, surprised by
how closely the two algorithms performed. In stark contrast to coalescing which
is executed each time the interference graph is rebuilt, preferencing can remove
copies only while coloring the graph. We conclude that the careful mechanisms
built into preferencing allow it to be competitive with a much more aggressive
technique.

4.3 Control-flow Overhead of Tiling and Execution Time
Differences

To maintain the structural properties of the tile tree during construction, the
tile tree builder may have to insert extra blocks at tile boundaries. Typically
these blocks fall through to their successor and, therefore, do not result in any
additional branches in the final program. However, there are cases when inserting
blocks results in unavoidable branches. We measured the control-flow overhead
incurred due to these branches. On average, Callahan-Koblenz inserted 5.8%
more branch instructions in the code. However, the increase in executed branches
was comparatively lower: 1.4% over all benchmarks. This difference between
static and dynamic branches indicates that the branches placed at tile boundaries
are infrequently executed.

We built three versions of each benchmark and compared their execution
times – executables were created by running the Chaitin-Briggs allocator, the
Callahan-Koblenz allocator, and the default linear-scan allocator that shipped
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with LLVM. Both CB and CK perform better than the linear-scan allocator,
recording improvements on average of 5.4% and 10.6% respectively. The compar-
ison between Callahan-Koblenz and Chaitin-Briggs is summarized in Figure 7.
As can be seen from the experimental results, CK outperforms CB on most of the
benchmarks – on average, it improved performance by 6.1% over CB. These gains
were mainly a result of the substantial reduction in spill instructions executed,
as described in Section 4.1. However, on epic, as a consequence of the extra
spills inserted by Callahan-Koblenz, it performed worse than Chaitin-Briggs,
increasing program runtime by 10.4%.

5 Conclusion

We have evaluated the Callahan-Koblenz allocator on three major criteria: the
amount of spill code inserted, the register-to-register copies eliminated, and the
overhead incurred due to tile construction. As seen in Section 4.1, CK was able to
significantly reduce the number of spill instructions when compared to Chaitin-
Briggs. This reduction can be attributed, in part, to being able to independently
allocate different parts of one live range. Secondly, tile local variables are given
precedence over LBNRs in that we prefer to spill a LBNR over a tile local.
This strategy is often beneficial, since unreferenced variables are typically long
lived and thus conflict with many variables in the same region. The CK results
emphasize that the spill-everywhere approach of Chaitin-Briggs can potentially
degrade performance. We were initially concerned that copy coalescing, a more
aggressive technique, might significantly outperform preferencing. However, our
results indicate that preferencing is reasonably competitive with coalescing. Our
experiments showed that, on average, Callahan-Koblenz emitted fewer spill in-
structions and produced faster running code than Chaitin-Briggs. However, we
reiterate that these experiments were not designed to determine which allocator
is better. Rather, our primary goal was to provide an understanding of the CK
allocator by using another graph coloring technique as a point of reference. To
that end, we did not consider adding improvements in the Chaitin-Briggs spilling
strategy as suggested in various research publications. Specifically, modifications
proposed by Bergner [1], Simpson [9] and Briggs [3] would reduce the number
of spills produced by the allocator. In future research, we intend to devise tech-
niques for improving the quality of spill code in both allocators.

6 Related Work

Though early computer science literature alludes to graph coloring approaches
to register allocation, Chaitin et al. presented the first paper comprehensively
describing a graph coloring register allocator [8, 7]. Subsequently, a number of
improvements have been proposed for Chaitin’s Yorktown allocator: Bernstein
et. al. augmented the allocator’s coloring strategy by choosing the best of three
heuristics [2]. They also presented a technique that attempted to reduce the
amount spill code inserted by Chaitin’s allocator. Bergner and his colleagues
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noted that spilling can be improved for live ranges that have a small region of
overlap [1]. They called their technique interference graph spilling. Our paper
focuses on the refinement of Chaitin’s allocator by Briggs et. al [5]. By adding
deferred spilling, Briggs and his colleagues were able to significantly improve
allocation, registering a reduction of spill costs up to 40% in their test suite.

To improve on the Yorktown allocator, some researchers incorporated pro-
gram structure into their allocation algorithms. Norris et. al. [17] designed an
allocator that operates on the program dependence graph and attempted to care-
fully place spill code. They compared their results to a Chaitin-style allocator
and reported up to a 3.7% decrease in spill code. Knobe and Zadeck [12] describe
a structure-based allocator using the notion of a control tree, which is vaguely
similar to a tile tree. This allocator is similar to Callahan-Koblenz in that it
can split live ranges around control tree nodes, it can spill inside of condition-
als, and its pruning of wedges is not unlike CK’s handling of LBNRs; however,
no empirical evaluation of the technique is presented. Lueh’s “Fusion” alloca-
tor also leverages program structure and appears to improve performance over
Chaitin-style allocation by an average of 8.4% on the SPEC92 benchmarks [16].
A recent article suggests that with a careful relaxation of the ordering of the
coloring stack, more preferences can be satisfied [13]. The hierarchical allocator
evaluated in this paper was designed by Callahan and Koblenz and published
in 1991 [6]. Since then, we know of one other attempt to implement the CK
allocator by Wu [19]. However, the implementation deviates significantly from
the published algorithm. The author reserves registers to accommodate machine
operands for spilling which significantly cripples the algorithm while the pub-
lished Callahan and Koblenz paper clearly states that the hierarchical allocator
does not reserve registers. There are several other major differences from the
published algorithm including ignoring the degree of a node while spilling and
not maintaining information during the bottom-up walk of the tree.
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