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ABSTRACT
Compute-intensive multi-dimensional summations that in-
volve products of several arrays arise in the modeling of elec-
tronic structure of materials. Sometimes several alternative
formulations of a computation, representing different space-
time trade-offs, are possible. By computing and storing some
intermediate arrays, reduction of the number of arithmetic
operations is possible, but the size of intermediate tempo-
rary arrays may be prohibitively large. Loop fusion can be
applied to reduce memory requirements, but that could im-
pede effective tiling to minimize memory access costs. This
paper develops an integrated model combining loop tiling
for enhancing data reuse, and loop fusion for reduction of
memory for intermediate temporary arrays. An algorithm is
presented that addresses the selection of tile sizes and choice
of loops for fusion, with the objective of minimizing cache
misses while keeping the total memory usage within a given
limit. Experimental results are reported that demonstrate the
effectiveness of the combined loop tiling and fusion transfor-
mations performed by using the developed framework.

1. INTRODUCTION
There has been tremendous progress in optimizing com-

piler technology, primarily focused on transformations that
improve execution time. However there has been very little
work that addresses memory space optimization and trade-
off between memory requirements and execution time. In
some scientific application domains, there are often various
alternative implementations of the computation, that involve
complex space-time trade-offs. For example, in some scien-
tific domains (exemplified by ab initio methods for modeling
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the electronic properties of materials), the input data to the
computation and the final results of the computation are rel-
atively compact, but large intermediate arrays are used. The
alternative computational forms differ in how some interme-
diate results are either stored and reused or recomputed due
to space limitations. In previous work, we have investigated
the application of algebraic transformations to minimize op-
eration count [21, 23, 24, 25]. However these transforma-
tions can result in the use of huge temporary intermediate
arrays that exceed the virtual memory limits on even large
computer systems. In this paper, we address the integrated
treatment of loop fusion transformations to reduce storage
requirements, along with loop tiling transformations to min-
imize memory access time.

The optimizations addressed in this paper are relevant to
some scientific application domains that are very compute-
intensive and consume significant computer resources at na-
tional supercomputer centers. Many of these codes are lim-
ited in the size of the problem that they can currently solve
because of memory and performance limitations. These com-
putational structures arise in computational physics codes
modeling electronic properties of semiconductors and met-
als [3, 15, 39], and in computational chemistry codes such
as ACES II [44], GAMESS [40], Gaussian [10] and NWChem
[13]. In particular, they comprise the bulk of the computation
with the coupled cluster approach to the accurate description
of the electronic structure of atoms and molecules [28, 36, 31,
4, 9].

The class of computations we consider in this paper in-
volves multi-dimensional summations over products of ar-
rays. There is considerable opportunity to reduce the total
number of arithmetic operations by making use of the al-
gebraic properties of commutativity, associativity, and dis-
tributivity. To make the overall optimization problem more
tractable, we view it as two separable sub-problems:

1. Given a specification of the required computation as a
multi-dimensional sum of the product of input arrays,
determine an equivalent sequence of nested loop com-
putations that uses a minimum number of arithmetic
operations.

2. Given an operation-count-optimal form of the compu-
tation (from the solution to the above sub-problem),
perform appropriate loop transformations to optimize
its execution, subject to memory capacity limitations.
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The first sub-problem was previously addressed by us and
reported in [25, 26] (a brief summary is provided in Section 2).
A synthesis procedure was developed that transforms an in-
put canonical representation of a multi-dimensional sum-of-
products expression into an equivalent sequence of nested
loops with a minimal arithmetic operation count. In this pa-
per, we address the problem of minimizing memory access
costs, subject to memory capacity limitations. We consider:

1. Loop Tiling: There is significant scope for temporal
reuse of data in the loops that arise in this context. Since
the arrays involved are often too large to fit into the
cache, loop tiling has significant potential for reducing
cache misses.

2. Loop Fusion: As mentioned above, the input to the
performance optimization problem addressed in this
paper is an operation-count-optimal sequence of nested
loops generated using a synthesis procedure [25, 26].
The sequence of nested loops use temporary interme-
diate arrays, but the operation-optimal sequence may
require intermediate arrays that are too large to fit in
the available virtual memory. Loop fusion can be very
effective in reducing the sizes of the intermediate ar-
rays. By fusing a loop nest that produces an interme-
diate array with the loop nest that consumes it, the di-
mensionality of the intermediate array can be reduced,
thereby reducing its memory requirement.

Loop tiling for enhancing data locality and parallelism has
been extensively studied [2, 5, 8, 14, 37, 38, 45, 47, 43]. Loop
fusion has also been studied [41, 42, 33, 32] as a means of
improving data locality. There has been much less work in-
vestigating the use of loop fusion as a means of reducing
memory requirements [11]. We have previously investigated
the problem of finding optimal loop fusion transformations
for minimization of intermediate arrays in the context of the
class of loops considered here [22, 21]. However, as we elab-
orate in the next section, the decoupled application of known
techniques for loop tiling and loop fusion transformations is
unsatisfactory in this context.

In this paper, we address the use of tiling and fusion trans-
formations in an integrated manner, and seek to minimize
the number of cache misses under a constraint on the total
amount of available main memory. The paper is organized as
follows. Section 2 provides some background on the context
in which the addressed optimization problem arises. Sec-
tion 3 addresses the problem of selecting optimal tile sizes
for single and multiple loop nests. A dynamic programming
algorithm for finding the optimal fusion and tiling is devel-
oped in Section 4. Experimental results on an SGI Origin
2000 system are presented in Section 5. We discuss related
work in Section 6. Section 7 provides conclusions.

2. THE COMPUTATIONAL CONTEXT
In the class of computations considered, the final result to

be computed can be expressed as multi-dimensional summa-
tions of the product of several input arrays. Due to commuta-
tivity, associativity, and distributivity, there are many differ-
ent ways to obtain the same final result and they could differ
widely in the number of floating point operations required.
Consider the following example:

S(t) =
X

i;j;k

A(i; j; t)�B(j; k; t) (1)

T1(j; t) =
X

i

A(i; j; t)

T2(j; t) =
X

k

B(j; k; t)

T3(j; t) = T1(j; t)� T2(j; t)

S(t) =
X

j

T3(j; t)

(a) Formula sequence

A(i; j; t) B(j; k; t)

P
i

P
kT1 T2

�
��

@
@@

�T3

P
jS

(b) Binary tree representation

Figure 1: A formula sequence and its binary tree represen-
tation.

If implemented directly as expressed above, the computa-
tion would require 2�Ni �Nj �Nk �Nt arithmetic opera-
tions to compute. However, assuming associative reordering
of the operations and use of distributive law of multiplica-
tion over addition is acceptable for the floating-point com-
putations, the above computation can be rewritten in vari-
ous ways. One equivalent form that only requires Ni�Nj �
Nt +Nj �Nk �Nt + 2�Nj �Nt operations is as shown in
Figure 1(a).

Generalizing from the above example, we can express in-
tegrals of products of several input arrays as a sequence of
formulae. Each formula produces some intermediate array
and the last formula gives the final result. A formula is ei-
ther:

� a multiplication formula of the form:

Tr(: : : ) = X(: : : )� Y (: : : ); or

� a summation formula of the form:

Tr(: : : ) =
X

i

X(: : : );

where the terms on the right hand side represent input arrays
or intermediate arrays produced by a previously defined for-
mula. Let IX , IY and ITr be the sets of indices in X(: : : ),
Y (: : : ) and Tr(: : : ); respectively. For a formula to be well-
formed, every index in X(: : : ) and Y (: : : ), except the sum-
mation index in the second form, must appear in Tr(: : : ).
Thus IX [ IY � ITr for any multiplication formula, and
IX�fig � ITr for any summation formula. Such a sequence
of formulae fully specifies the multiplications and additions
to be performed in computing the final result.

A sequence of formulae can be represented graphically as
a binary tree to show the hierarchical structure of the compu-
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tation more clearly. In the binary tree, the leaves are the in-
put arrays and each internal node corresponds to a formula,
with the last formula at the root. An internal node may ei-
ther be a multiplication node or a summation node. A mul-
tiplication node corresponds to a multiplication formula and
has two children which are the terms being multiplied to-
gether. A summation node corresponds to a summation for-
mula and has only one child, representing the term on which
summation is performed. As an example, the binary tree in
Figure 1(b) represents the formula sequence shown in Fig-
ure 1(a). We have shown that the problem of determining the
operator tree with minimal operation count is NP-complete,
and have developed a pruning search procedure [25].

The operation-minimization procedure described above re-
sults in the creation of intermediate temporary arrays. Some-
times these intermediate arrays that help in reducing the com-
putational cost create a problem with the memory capacity
required.

Consider the sequence of formulae in Figure 2(a) instead
of directly computing

S(k; l;m) =
X

i;j;n

A(i; j; k)�B(i; l;m)�

C(j; l;m)�D(j;m; n)
(2)

Let Ni = Nj = Nj = Nk = Nl = Nm = Nn = N =
1000 and all the arrays be of double precision. The use of the
temporary intermediate arrays reduces the total number of
arithmetic operations from O(1018) to O(1015):

The total size of the five arraysA,B,C,D and S is 5�N 3 =
5 � 109 elements or 40GB. However, the size of the interme-
diate array T1 is N 4 = 1012 elements or 8TB, which likely
exceeds the memory capacity of most computers and will
impose a high overhead with disk I/O. Thus, the opera-
tion minimization through use of temporary intermediates
has provided a benefit in reducing arithmetic operations, but
has increased the memory requirements significantly.

In many situations, problems with memory requirements
of the large intermediate arrays can be mitigated through
loop fusion. Loop fusion merges loop nests with common
outer loops into larger imperfectly nested loops. When one
loop nest produces an intermediate array which is consumed
by another loop nest, fusing the two loop nests allows the di-
mension corresponding to the fused loop to be eliminated in
the array. This results in a smaller intermediate array and
thus reduces the memory requirements. For the example
considered, the effect of fusion is shown in Figure 2(b). The
use of loop fusion can be seen to result in significant reduc-
tion to the total memory requirement. For a computation
comprised of a number of nested loops, there will generally
be a number of fusion choices, that are not all mutually com-
patible. This is because different fusion choices could require
different loops to be made the outermost. In prior work, we
addressed the problem of finding the choice of fusions for a
given operator tree that minimized the space required for all
intermediate arrays after fusion [22, 23].

Loop tiling is used to enhance temporal cache locality and
thus reduce memory access costs in compute-intensive loops
such as matrix-matrix product and other BLAS-3 routines.
Although current commercial compiler technology is quite
sophisticated regarding tiling of perfectly nested loops such
as matrix-matrix multiplication, tiling of imperfectly nested
loops poses a significant challenge. The state-of-the-art in
shackling [20] does not allow a simple treatment of sequences

of loops. Further, if loop fusion is first used to control the
storage requirement, constraints are imposed on permutabil-
ity of loops in loop nests, thereby constraining the amount
of temporal reuse possible through tiling. This problem is
illustrated through an example later in the paper.

Thus, although each of the two transformations consid-
ered — loop tiling and loop fusion — has been much stud-
ied, the independent application of these transformations is
not appropriate in this context. By taking an integrated view
of this optimization problem requiring both loop tiling and
loop fusion, we develop a strategy that results in significant
performance improvement.

3. TILE SIZE SELECTION
The purpose of this section is to provide a practical tiling

procedure that minimizes the number of cache misses for
computations involving large arrays. Consequently, certain
approximations are made in our cost model, most of which
derived from the assumption that any linear dimension of an
array is significantly larger than 1.

3.1 Tiling, Data Reuse, and Memory Access
Cost

There are two sources of data reuse: a) temporal reuse,
with multiple references to the same memory location, and
b) spatial reuse, with references to neighboring memory lo-
cations on the same cache line. To simplify the treatment in
the rest of the paper, the cache line size is implicitly assumed
to be one. In practice, tile sizes are determined under this
assumption, and then the tile sizes corresponding to loop in-
dices that index the fastest-varying dimension of any array
are increased if necessary, to equal the cache line size. When
this is done, other tiles may be sized down slightly so that
the total cache capacity is not exceeded. Another practical
consideration regarding spatial reuse that we do not explic-
itly address in this paper is that of alignment of arrays with
cache-line boundaries. Where possible, it is advantageous
to align array origins with cache-line boundaries. However,
even if such alignment is not possible, copying of data tiles
into contiguous temporary arrays is a solution to this prob-
lem.

We introduce a memory access cost model (Cost), a lower
bound on the number of cache misses, as a function of tile
sizes and loop bounds. In practice, the number of misses
is higher than this lower bound due to self-interference and
cross-interference between arrays. Our cost model would be
exact in the theoretical case of a fully associative cache.

3.2 Single Node Tiling
First, we consider the most general form of a node in the

operator-tree, that might arise in the considered context (Sec-
tion 2):

C(i1; :::; in; k1; :::; km; l1; :::; lp) =
X

j1;:::;jq

A(i1; :::; iq ; j1; :::; jn; l1; :::; lp)�

B(j1; :::; jq ; k1; :::; km; l1; :::; lp)

Here j1; :::; jq are the summation indices that appear in
both A and B but not in C, l1; :::; lp are common to all 3 ar-
rays, and k1; :::; km and i1; :::; in appear in one of the two
input arrays and the result. To simplify the notation, we
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T1(j; k; l;m) =
X

i

A(i; j; k)�B(i; l;m)

T2(j; l;m) =
X

n

C(j; l; n)�D(j;m; n)

S(k; l;m) =
X

j

T1(j; k; l;m)� T2(j; l;m)

(a) Formula sequence

FOR j = 1, Nj
FOR l = 1, Nl

FOR m = 1, Nm
T2 = 0
FOR n = 1, Nn
T2 = T2 + C(j,l,n) * D(j,m,n)

FOR k = 1, Nk
T1(k) = 0
FOR i = 1, Ni

T1(k) = T1(k)+A(i,j,k)*B(i,l,m)
S(k,l,m) = S(k,l,m) + T1(k) * T2

(b) Memory-reduced version (fused)

Figure 2: A sequence of formulae and the fused code with reduced memory.

consider a logical view, where a collection of indices such as
i1; :::; iq is replaced by an index vector i:

C(i; k; l) =
X

j

A(i; j; l)�B(j; k; l) (3)

This notation divides the indices into four categories: three
of them (i, j, and k) appear in two of the arrays but not in
the third, while l appears in all of them. It is not possible
for any index to appear in only one of the three arrays. An
index that appears in A or B must also appear in C unless it
is a summation index. Any summation indices must appear
both in A and B; otherwise the operator tree would be non-
optimal in the total number of arithmetic operations [25].

There is no possible reuse of data along the l index, as for
each value of l different sections of the arraysA,B, and C are
used. Hence l should be the outer-most loop, and the cost for
the entire nest equals the cost for the ijk nest multiplied by
the number of iterations over l.

Therefore, the general form of a node that we consider is:

C(i; k) =
X

j

A(i; j)�B(j; k) (4)

With the most general form of tiling, this computation can
be expressed as:

FOR ii = 1, Ni, Ti
FOR jj = 1, Nj, Tj

FOR kk = 1, Nk, Tk
FOR i = ii, ii + Ti - 1

FOR j = jj, jj + Tj - 1
FOR k = kk, kk + Tk - 1
C(i,k) = C(i,k) + A(i,j) * B(j,k)

where Ti, Tj , and Tk are the tile sizes and Ni, Nj , and Nk are
the extents of the arrays in the dimensions i, j, and k, respec-
tively (Figure 3). We will refer to the loops over ii, jj, and
kk as tiling loops, whereas the loops over i, j, and k will be
referred to as intra-tile loops. In order to avoid some clut-
ter, in the above example of a tiled loop nest (and elsewhere
in the paper), we do not explicitly capture the proper han-
dling of incomplete last tiles. Actual codes generated using
the presented framework will of course have to use appro-
priate min/max functions for the loop bounds of intra-tile
loops to correctly handle incomplete tiles.

If the sizes of all arrays are larger than the cache size C,
it can be shown [35] that, for this particular permutation of the
tiling loops ii, jj, and kk, the solution to minimize the cost is
Tk = 1, Ti = Tj = T =

p
C + 1 � 1. Since C is typically

much larger than 1, for all practical purposes we can approx-
imate T �

p
C. Of course, the cache capacity constraint has

to be rigorously satisfied when the solution is carried out.
Also, T has to be rounded up/down to an integer, as

p
C is

not necessarily an integer. We choose to leave these actual
implementation details aside in order to provide a simplified
picture of the algorithm. Then the total cost is:

Cost � NiNj +
2NiNjNk

T
(5)

In this equation, the first term represents the cost for the ar-
ray A, whose elements get full temporal reuse in the kk loop,
while the second term is the cost for the arrays B and C. It
is important to note that the cost, as well as the optimal tile
sizes, depend on the permutation of the tiling loops. The first
term in Equation 5 can be replaced by NiNk or NjNk if dif-
ferent permutations are considered. The absolute minimum
memory access cost for the single node problem is, therefore,
equal to:

Cost � min(NiNj ; NjNk; NiNk) +
2NiNjNk

T
(6)

3.3 Loop Fusion and Multiple Node Tiling
As discussed in Section 2, loop fusion is often necessary

in order to reduce the sizes of the intermediate arrays and
to keep the total memory requirements within the amount
of physical memory available. In this section, we consider,
as an example, the effects of loop fusion on the total mem-
ory requirements and the memory access cost of a three-node
problem, and show that an integrated approach of tiling and
fusion is needed.

Consider three equations, where the first two compute ar-
rays C and D,

C(i; k) =
X

j

A(i; j)�B(j; k); (7)

D(k;m) =
X

l

E(l;m)� F (k;m); (8)

which are used in a subsequent computation for array G:

G(i;m) =
X

k

C(i; k)�D(k;m) (9)

Tiling of independent loop nests. If we had no constraints
on the total storage required, Equations 7–9 could be simply
implemented as a sequence of three disjoint sets of nested
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Tk B(j,k)

C(i,k)Tk

Nk

Ni

Nj

Ti

A(i,j)Tj

Ti

Nj

Tj

Figure 3: Example of single node tiling. Arrows point from input arrays A and B to the produced array C.

loops, which could be tiled according to Section 3.2. The
memory access cost would be given by a sum of three terms,
each one having the form of Equation 5. However, in prac-
tice for some applications involving ab initio calculations for
electronic properties, it is often impossible or impractical to
allocate storage for the intermediate arrays C and D.

Loop fusion. To minimize memory usage, the arrays C and
D can be reduced in size by fusion of the k loop over all three
nodes and by fusion of the m loop over the last two nodes.
This would reduce C to a one-dimensional array and D to
a scalar, thereby dramatically reducing the total storage re-
quired [22]:

FOR k = 1, Nk
FOR i = 1, Ni

C(i) = 0.0
FOR j = 1, Nj
C(i) = C(i) + A(i,j) * B(j,k)

FOR m = 1, Nm
D = 0.0
FOR l = 1, Nl
D = D + F(k,l) * E(l,m)

FOR i = 1, Ni
G(i,m) = G(i,m) + C(i) * D

However, this approach could result in a significant per-
formance penalty in the form of decreased temporal reuse
of cache elements. In this example, tiling along i is no longer
possible, preventing any possible temporal reuse of elements
of A. This is because every element of C and D would have
to be fully used in computing G before it could be overwrit-
ten. Thus effective tiling of the resulting loops is constrained
because of the loop fusion.

Integrated treatment of tiling and fusion. An alternative to
these choices is to analyze the three sets of nested loops in-
dividually, find the loop tiling and permutation that mini-
mizes the memory access cost for each individual node, and
then consider the possibility of memory reduction by fusion
of the tiling loops only (Figure 4). Since both memory access
cost (Equation 5) and potential loop fusions are dependent
on the permutation of the tiling loops at each node in the
tree, a search algorithm is necessary to find the optimal loop

permutations and loop fusions that minimize both memory
access cost and memory space requirements. Such an algo-
rithm is presented in Section 4.

Loop fusion causes a small reduction to the total number
of cache misses in the cost formula 5: if an array that is pro-
duced in one loop and consumed in the following loop, is re-
duced by fusion (so that its extents are equal to the tile sizes
along those directions), its elements will be reused at the par-
ent node, resulting in zero cost for that array at the parent
node. The implication of this observation is that when fusing
the nested loops corresponding to a parent-child node pair
in the operator tree, the number of cache misses for the op-
timally fused and tiled structure is very well approximated
simply by the sum of the number of misses for the optimally
tiled forms of the individual loops, counting the produced-
consumed array’s cost only once. In the following section,
this observation is used in developing an efficient dynamic-
programming algorithm that computes the optimally tiled
and fused loop structure using a bottom-up traversal of the
operator tree.

4. A TILING AND FUSION ALGORITHM
We now propose an efficient algorithm for the memory ac-

cess cost and memory space minimization problem. Given
an operator tree, our goal is to find:

� the tile sizes of individual nodes in the operator tree,

� the tiling loop permutations of individual nodes in the
tree, and

� the loop fusions between adjacent nodes

such that the total memory access cost and memory space of
the operator tree are optimal. Since both memory access cost
and memory space cannot in general be minimized by the
same solution, the goal of our algorithm is to find the set of
candidate solutions defined as follows. A solution is a candi-
date solution if no other solution has both a lower memory
access cost and a lower memory space requirement. This im-
plies that once the set of candidate solutions is ordered by
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C

Nm

G

D

E

F

A

B

Ni

Nk

Nj
Nj

Nl

Nl

Nm

Nk

Ni

Figure 4: Example of tiling and fusion for a three-node operator tree. The arrays C and D are reduced by loop fusion to
“bands,” represented in the figure by shaded areas. Potential tiles for C and D are shown in black. The arrows point from
consumed to produced arrays.

increasing memory access cost, it is also in decreasing mem-
ory space order. The optimal solution is the candidate so-
lution that has the lowest memory access cost, its memory
space requirement being at the same time lower than the to-
tal available memory.

We impose two constraints on the problem:

1. The operator tree is such that the formation of index
vectors (as described in Section 3) from loop indices
is consistent, i.e., if a pair of indices combine together
in one way at one node of the operator tree, they will
similarly combine at any other node where they both
appear together. The case of a general operator tree
(where this constraint is not satisfied) is still an un-
solved open problem.

2. The arrays involved are large enough so that every lin-
ear dimension of an array is larger than the square root
of the cache size. This condition is generally true in the
computational domains that motivate the problem ad-
dressed by this paper.

These two assumptions permit the estimation of the mem-
ory access cost of each operator tree node (Equations 5 and 6),
and the gain (in both access cost and space) from loop fu-
sion. Therefore, for a given tiled and fused loop structure of
the tree, our model completely describes its access cost and
memory space.

The aim of the algorithm we present here is to efficiently
enumerate the list of candidate solutions. One could imagine
a naive search, in which all loop fusions would be consid-
ered, and the loop structures created by these fusions would
be compared for access cost and space. The downside of this
approach is that for large trees it becomes extremely time-

consuming. It can be shown that the complexity of the prob-
lem increases exponentially with N , the number of nodes in
the tree.

Another approach to solve this problem is to consider a
dynamic programming bottom-up procedure. It may be ob-
served that the access cost and space requirement of one tree
region are unrelated to other tree regions. Hence, we can
compute partial solutions at each node concerning the sub-
tree below. This procedure has a cost that is linear in N and
much faster than the exhaustive approach.

The advantage of the bottom-up approach is that inferior
loop structures are pruned even at early stages of the search
and the list of partial solutions at each node is relatively small.
For each partial solution, we keep the following information:

� The memory access cost of the subtree below, including
the root of the subtree.

� The sum of memory space requirements of all inter-
mediate arrays in the subtree, including the array pro-
duced at the root of the subtree.

� A list of the possible fusions on the branch between the
root of the subtree and its parent. This list is kept be-
cause a solution with higher memory access cost and
space that allows more fusions may later improve by
subsequent fusion.

Any solution that is inferior to another one in all three re-
spects (higher memory access cost and space, and fewer al-
lowable fusions) is discarded. Thus we keep track of only
those candidate solutions for a subtree that may become part
of an optimal solution. The procedure for computing the can-
didate solutions for a subtree rooted at node X whose two
children are both intermediate arrays is given in Figure 5. If

108



Merge (X):
foreach permutation p of X:Indices

UpList = PossibleFusions (p;X:Parent.Indices)
LeftList = PossibleFusions (p;X:LeftChild.Indices)
RightList = PossibleFusions (p;X:RightChild.Indices)
foreach solution s1 2 X:LeftChild.Solutions

foreach solution s2 2 X:RightChild.Solutions
foreach fusion f1 2 s1:Fusions

foreach fusion f2 2 s2:Fusions
if f1 2 LeftList ^ f2 2 RightList ^ EitherPrefix(f1; f2) then

create new solution s
compute s.Cost and s.Space based on fusions f1 and f2
s:Fusions = ff 2 UpList j EitherPrefix(f; f1)^EitherPrefix(f; f2)g
InsertSolution (s;X:Solutions)

InsertSolution (s; Solns):
foreach s0 2 Solns

if Inferior (s; s0) then
return

if Inferior (s0; s) then
Solns = Solns� fs0g

Solns = Solns [ fsg

PossibleFusions (p; Indices) � fp0 j p0 is a prefix of p ^ p0 � Indicesg

EitherPrefix (f; f 0) � f is a prefix of f 0 _ f 0 is a prefix of f

Inferior (s1; s2) � s1:Cost > s2:Cost ^ s1:Space > s2:Space ^ s1:Fusions � s2:Fusions

Figure 5: Procedure for finding the solutions for a subtree rooted at X .
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Figure 6: An example operator tree.

node X has one or more children that are input arrays, the
procedure would be simpler.

As an example, consider the following multi-dimensional
summation

K(i; p) =
X

j;l;k;q;m

D(k; l)�E(l;m)�A(i; j)�

B(j; k)�G(m; q)�H(q; p)
(10)

computed by a sequence of formulae represented by the op-
erator tree shown in Figure 6. Let us consider a 32KB cache,
and the sizes of the arrays to be Ni = 64000, Nm = 6400,
Nl = Nk = Nq = 640 and Np = Nj = 64 8-byte ele-
ments. Let us also consider 64 8-byte elements to be a ”mem-
ory unit”, to simplify the algebra. The dimensions have been
chosen to be very different, since this is characteristic of many

computational problems in the domain of primary interest.
The algorithm starts with the leaf nodes and proceeds up-

wards. The first node in the tree could be the one creating the
intermediate array C(i; k) as a product of the input arrays
A(i; j) and B(j; k). Each permutation of the three indices i,
j and k is examined, according to Equation 5 (with the men-
tion that Ni = 1,000 memory units, Nj = 1 memory unit and
Nk = 10 memory units):

No. Permutation Possible Cost Usage
fusions (units) (units)

1 (i; j; k) 0; fig 2:1 � 104 104

2 (i; k; j) 0; fig; fi; kg 3� 104 104

3 (j; i; k) 0 2:1 � 104 104

4 (k; i; j) 0; fkg; fk; ig 3� 104 104

5 (k; j; i) 0; fkg 2:001 � 104 104

6 (j; k; i) 0 2:001 � 104 104

Let us take a closer look at the way the table above is con-
structed. For each permutation, e.g., (i; j; k) (which means
that i is the outer loop, and k is the inner loop), the possible
fusions with the parent node may be determined by inspec-
tion (i.e., comparing common indices). The memory cost is
derived according to Equation 5, while the memory usage of
the intermediate arrayC(i; k) isNiNk = 104, independent of
the permutation. Even at this level, two out of the six partial
solutions can be pruned out, because they are not optimal.
Those solutions are permutations 3 and 6. Both have higher
or equal memory cost and usage than solution 5, for example.
Their lists of fusions are also very limited, because the sum-
mation index j at the outer loop prevents any fusion with the
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parent node. The importance of fusion can be pointed out by
looking at solutions 2 and 4. Although their present costs are
high, their lists of fusions are large, therefore they could be-
come starting points of an optimal solution in the future. The
list of partial solutions at node C has four members, permu-
tations 1, 2, 4 and 5. A similar list is created for node F and
the merging procedure is applied to those two lists, creating
a list of solutions for J , and so on.

The table below lists the total number of possible loop struc-
tures and the number of candidate solutions at each node of
the tree.

Node Number of subtree solutions
Dynamic programming Exhaustive search

1. C(i; k) 4 6
2. F (k;m) 3 6
3. J(i; m) 8 348
4. I(m;p) 3 6
5. K(i; p) 2 19638

The exponential increase in the number of solutions is ob-
servable in the case of the exhaustive search. Nodes 1, 2 and
4, that have no children nodes, have 6 solutions. Node 3
has 348 solutions, while node 5 has 19638 solutions. In con-
trast, the dynamic programming approach presents a rela-
tively constant number of subtree solutions per node.

Assuming a memory space threshold of 256MB and a cache
size of 32KB, the universal tile size is T = 64 elements and
the optimal solution produced by the dynamic programming
algorithm for this example is as follows.

FOR kk = 1, Nk, T
FOR ll = 1, Nl, T

FOR m = 1, Nm
FOR k = kk, kk + T - 1

FOR l = ll, ll + T - 1
F(k,m) = F(k,m) + D(k,l) * E(l,m)

FOR pp = 1, Np, T
FOR qq = 1, Nq, T

FOR m = 1, Nm
FOR p = pp, pp + T - 1

FOR q = qq, qq + T - 1
I(m,p) = I(m,p) + G(m,q) * H(q,p)

FOR ii = 1, Ni, T
set array C(T,Nk) to 0
FOR jj = 1, Nj, T

FOR k = 1, Nk
FOR i = ii, ii + T - 1

FOR j = jj, jj + T - 1
C(i-ii+1,k) = C(i-ii+1,k) +

A(i,j) * B(j,k)
FOR mm = 1, Nm, T

set array J(T,T) to 0
FOR k = 1, Nk
FOR i = ii, ii + T - 1

FOR m = mm, mm + T - 1
J(i-ii+1,m-mm+1) = J(i-ii+1,m-mm+1) +

C(i-ii+1,k) * F(k,m)
FOR p = 1, Np
FOR i = ii, ii + T - 1

FOR m = mm, mm + T - 1
K(i,p) = K(i,p) + J(i,m) * I(m,p)

There are three fusions that reduce the sizes of the arrays
C(Ni; Nk) and J(Ni; Nm) to C(T;Nk) and J(T; T ), respec-
tively.

5. EXPERIMENTAL RESULTS
In this section, we present results of experimental perfor-

mance evaluation of the effectiveness of the integrated ap-
proach to fusion and tiling developed in this paper. The al-
gorithm from Section 4 was used to fuse and tile the code for
the sequence of computations shown in Figure 4. Measure-
ments were made on a single processor of a Silicon Graph-
ics Origin 2000 system consisting of thirty-two 300MHz IP31
processors and 16GB of main memory. Each processor has a
MIPS R12000 CPU and a MIPS R12010 floating point unit, as
well as 64KB on-chip caches (32KB data cache and 32KB in-
struction cache), and a secondary, off-chip 8MB unified data/
instruction cache. The tile size selection algorithm presented
earlier assumes a single cache. It can be extended in a straight-
forward fashion to multi-level caches, by multi-level tiling.
However, in order to simplify measurement and presenta-
tion of experimental data, we chose to apply the algorithm
only to the secondary cache, in order to minimize the num-
ber of secondary cache misses. For each computation, we de-
termined the number of misses using the hardware counters
on the Origin 2000.

Three alternatives were compared:

� TFA: use of the integrated Tiling and Fusion Algorithm
presented in Section 4

� FUS: use of fusion alone, for reducing memory require-
ment

� UNF: no explicit fusion or tiling

In order to study the performance effects in the context that
motivated our study of this problem (where huge interme-
diate arrays pose problems with memory requirements), we
chose array sizes so that one of the intermediate arrays (C)
dominated the total memory requirements of the computa-
tion (Figure 4). Keeping Ni, Nj , Nl and Nm constant (Ni =
2048, Nj = 256, Nl = 256, Nm = 256), we ran performance
tests for Nk increasing from 2048 to 524288 8-byte elements
(Table 1). For very large Nk, array C is so large that the sys-
tem’s virtual memory limit for one process is exceeded, so
that loop fusion is necessary to bring the total memory re-
quirements under the limit.

The codes were all compiled with the highest optimization
level of the SGI Origin 2000 FORTRAN compiler (-O3). To
reduce cache conflicts, the array tiles were first copied into
a contiguous work space whose size did not exceed that of
the secondary cache, and the computations were performed
in that work space. Therefore, potential cache conflicts were
eliminated during the computation phase (order N 3 cost),
and may have only occurred during copying (orderN 2 cost).
The performance data was generated over multiple runs, and
average values are reported. Standard deviations were typ-
ically around 10MFLOPs. The experiments were run on a
time-shared system; some interference with other processes
running at the same time on the machine was inevitable, and
its effects are especially pronounced for the tests with large
Nk .

Table 1 presents the memory requirement, measured per-
formance (in MFLOPs) and the number of secondary cache
misses generated by the three alternatives. Both CPU and
wall clock times were measured, and they were found to be
essentially the same.

The main observations from the experiment are:
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Nk Memory requirement Performance (MFLOPs) Cache misses
TFA FUS UNF TFA FUS UNF TFA FUS UNF

2K 16MB 16MB 52MB 489 83 473 1:1� 106 4:5 � 107 1:7� 106

4K 24MB 24MB 96MB 491 72 450 2:1� 106 7:2 � 107 2:1� 106

8K 40MB 40MB 184MB 487 75 452 4:5� 106 8:5 � 107 4:4� 106

16K 72MB 72MB 360MB 485 67 448 1:0� 107 2:4 � 108 9:5� 106

32K 136MB 136MB 712MB 479 71 435 1:9� 107 3:1 � 108 2:5� 107

64K 264MB 264MB 1.4GB 483 68 420 4:8� 107 7:5 � 108 6:6� 107

128K 520MB 520MB 2.8GB 483 65 326 9:8� 107 1:7 � 109 4:0� 108

256K 1GB 1GB 5.5GB 484 66 N/A 1:7� 108 3:5 � 109 N/A
512K 2GB 2GB 11GB 478 62 N/A 3:2� 108 9:2 � 109 N/A

Table 1: Performance data for the integrated tiling and fusion algorithm (TFA), compared with performance data for fused
alone (FUS), and unfused loops (UNF).

� The total memory requirement is minimized by com-
plete fusion of the outer loops over k and m (FUS),
which brings the intermediate arraysC and D down to
a vector and a scalar, respectively. However, the mem-
ory requirement of the integrated tiling and fusion al-
gorithm (TFA) is only slightly higher, since the tiling
loops are fused, and the sizes of arrays C and D are
reduced after fusion to bands of much smaller sizes.
In Table 1, the difference in memory requirements be-
tween FUS and TFA cannot be seen due to the num-
ber of significant digits used. The UNF version has sig-
nificantly higher memory requirements since no fusion
has been applied to reduce temporary memory require-
ments. As Nk is increased, the UNF version requires
more memory than the virtual memory limit on the sys-
tem.

� The maximally fused version (FUS) has the lowest mem-
ory requirement, but incurs a high performance penalty
due to the constraints imposed on the resulting loops
that prevents effective tiling and exploitation of tempo-
ral reuse of some of the arrays, which leads to a higher
number of cache misses, as shown in Table 1.

� The TFA and UNF versions show comparable perfor-
mance for small Nk. The SGI compiler is quite effective
in tiling perfectly nested loops such as the sequence of
three matrix-matrix products present in the UNF ver-
sion. The performance using the BLAS library routine
DGEMM was found to be the same as that of the UNF
version with a sequence of three nested loops corre-
sponding to the three matrix products. For large Nk,
the performance of UNF suffers significant deteriora-
tion, possibly due to secondary cache interference with
other processes.

6. RELATED WORK
Much work has been done on improving locality and par-

allelism by loop fusion. Kennedy and McKinley [17] pre-
sented a new algorithm for fusing a collection of loops to
minimize parallel loop synchronization and maximize par-
allelism. Two polynomial-time algorithms for improving lo-
cality were given. Recently, Kennedy [18] has developed a
fast algorithm that allows accurate modeling of data sharing
as well as the use of fusion enabling transformations.

Singhai and McKinley [41] examined the effects of loop fu-
sion on data locality and parallelism in combination. They
viewed the optimization problem as a problem of partition-
ing a weighted directed acyclic graph, in which the nodes
represent loops and the weights on edges represent amount
of locality and parallelism. Although the problem is NP-
hard, they were able to find optimal solutions in restricted
cases and heuristic solutions for the general case.

However, the work addressed in this paper considers a dif-
ferent use of loop fusion, which is to reduce array sizes and
memory usage of automatically synthesized code containing
nested loop structures. Traditional compiler research has not
addressed this use of loop fusion because this problem does
not arise with manually-produced programs.

Gao et al. [11] studied the contraction of arrays into scalars
through loop fusion as a means to reduce array access over-
head. They partitioned a collection of loop nests into fusible
clusters using a max-flow min-cut algorithm, taking into ac-
count the data dependencies. However, their study is mo-
tivated by data locality enhancement and not memory re-
duction. Also, they only considered fusions of conformable
loop nests, i.e., loop nests that contain exactly the same set of
loops.

Recently, we investigated the problem of finding optimal
loop fusion transformations for minimization of intermedi-
ate arrays in the context of the class of loops considered here
[22]. To the best of our knowledge, the combination of loop
tiling for data locality enhancement and loop fusion for mem-
ory reduction has not previously been considered.

Memory access cost can be reduced through loop transfor-
mations such as loop tiling, loop fusion, and loop reordering.
Although considerable research on loop transformations for
locality has been reported in the literature [8, 29, 30, 33, 45],
issues concerning the need to use loop fusion and loop tiling
in an integrated manner for locality and memory usage opti-
mization have not been considered. Wolf et al. [46] consider
the integrated treatment of fusion and tiling only from the
point of view of enhancing locality and do not consider the
impact of the amount of required memory; the memory re-
quirement is a key issue for the problems considered in this
paper. Loop tiling for enhancing data locality has been stud-
ied extensively [2, 8, 37, 38, 45, 43], and analytic models of the
impact of tiling on locality have been developed [12, 27, 34].
Recently, a data-centric version of tiling called data shack-
ling has been developed [19, 20] (together with more recent
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work by Ahmed et al. [1]) which allows a cleaner treatment
of locality enhancement in imperfectly nested loops. As men-
tioned earlier, loop fusion has also been used as a means of
improving data locality [18, 41, 42, 33, 32].

7. CONCLUSION
In this paper, we have addressed the memory-access and

space optimization of a class of nested loop computations
that implement multi-dimensional summations of the prod-
uct of several arrays. We have described a dynamic program-
ming algorithm for finding the optimal fusion and tiling. Ex-
perimental results demonstrate the importance of the appli-
cation of tiling together with fusion on such nested loops.
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