1

Concurrency Analysis for Parallel
Programs with Textually Aligned

Barriers

Amir Kamil Katherine Yelick

Computer Science Division, University of California, Berkeley

{kamil,yelick @cs.berkeley.edu

Abstract. A fundamental problem in the analysis of
parallel programs is to determine when two state-
ments in a program may run concurrently. This anal-
ysis is the parallel analog to control flow analy-
sis on serial programs and is useful in detecting
parallel programming errors and as a precursor to
semantics-preserving code transformations. We con-
sider the problem of analyzing parallel programs that
access shared memory and use barrier synchroniza-
tion, specifically those with textually aligned barriers
and single-valued expressions. We present an inter-
mediate graph representation for parallel programs
and an efficient interprocedural analysis algorithm
that conservatively computes the set of all concur-
rent statements. We improve the precision of this al-
gorithm by using context-free language reachability
to ignore infeasible program paths. We then apply
the algorithms to static race detection and enforcing
a sequentially consistent execution in the Titanium
programming language and show that both can ben-
efit from the concurrency information provided.

Introduction

statements in a program. The analysis is done for the Tita-
nium language 49, a single program, multiple data global
address space variation of Java that runs on most parallel and
distributed memory machines. We first construataacur-
rency graphrepresentation of a program, taking advantage
of two features of the Titanium language parallel execution
model:textual barrier alignmentwhich statically guarantees
that all threads reach the same textual sequence of barriers,
and single-valuedexpressions, which provably evaluate to
the same value on all threads.[We then present a simple
algorithm that uses the concurrency graph to determine the
set of all concurrent expressions in a program. This analysis
proves too conservative, however, and we improve its preci-
sion by performing a context-free language analysis on a mod-
ified form of the concurrency graph. We prove the correctness
of both analyses and show that their total running times are
quadratic in the size of the input program.

Concurrency analysis can be used to improve the quality of
other analyses and to enable optimizations. To demonstrate
the usefulness of our concurrency analysis, we apply it to
two client problems. The first is data race analysis, which can
be used to report potential program errors to application pro-
grammers. The secondnsemory consistency model enforce-
ment which can be used to provide a stronger and more in-
tuitive memory model while still allowing the compiler and
hardware to reorder memory operations in many instances.
In related work with Su 15|, we demonstrate that memory
model enforcement can have a significant negative impact on
optimizations as well, but that this effect is mitigated when
combined with our concurrency analysis. In this paper, we
focus on the foundations of the concurrency analysis prob-
lem: how it can be performed efficiently and be made accurate
enough to effectively increase the precision of both clients on
a set of application benchmarks.

As the rate of scaling of uniprocessor machines slows down,
application writers and system vendors alike have been turn-
ing to multiprocessor machines for performance. Most m2-  NMotivation
jor CPU manufacturers have products or plans for chips with

multiple cores, so that parallelism once hidden within th&,ncyrrency information is useful for many program analyses
micro-architecture will now be exposed to the assembly lafiq optimizations. We focus on two clients that stand to ben-

guage and, in all likelihood, to application level softwaregit from this information: static race detection and enforcing
Such systems are modeled after SMP multiprocessors a”%éh‘uential consistency.

low all processors to simultaneously access shared memory.

In addition, for large-scale parallel machines there is increas-

ing interest in global address space languages, which give 7ot Static Race Detection

grammers the illusion of a shared memory machine on top of

distributed memory machines and clusters. Analysis and &p-parallel programs, alata race occurs when multiple

timization of parallel shared memory code is increasingly inthreads access the same memory location, at least one of the

portant in both of these settings. accesses is a write, and the accesses can occur concurrently
In this paper we introduce anterprocedural concurrency [21]. Data races often correspond to programming errors and

analysisfor programs with barrier synchronization, whiclpotentially result in non-deterministic runtime behavior. Con-

captures information about the potential concurrency betwaernmrency analysis can be used to statically detect races at



compile-time [L1,12], particularly when combined with alias2000, and NEC SX6). Instead of having dynamically created
analysis P]. threads as in Java, Titanium isiagle program, multiple data
(SPMD) language, so all threads execute the same code im-
2.2 Sequential Consistency age.
For a sequential program, compiler and hardware transforma; . .
tions must not violate data dependencies: the order of all p?f?} Textually Aligned Barriers

of conflicting memory accesses must be preserved. Two Mghke many SPMD languages, Titanium hasarier construct

ory accessesontflictif they access the same memory locanat forces threads to wait at the barrier until all threads have
tion and at least one of them is a write. The execution mogghched it. Aiken and Gay introduced the concepstotfic-

for parallel programs is more complicated, since each threggh) correctnesgo enforce that all threads execute the same
executes its own portion of the program asynchronously afgnber of barriers, and developed a static analysis that deter-

there is no predetermined ordering among accesses issueghiis whether or not a program is structurally corréctJ.
different threads to shared memory locationsnémory con- The following code is not structurally correct;

sistency modalefines the memory semantics and restricts the
possible execution order of memory operations. if (Ti.thisProc() % 2 == 0)

Among the various modelsequential consistendit7] is Ti.barrier(); // even ID threads
the most intuitive for the programmer. The sequential cogise
sistency model states that a parallel execution must behave // odd ID threads
as if it were an interleaving of the serial executions by indi-
vidual threads, with each individual execution sequence pléanium provides a stronger guaranteetextually aligned
serving the program orde?$]. For example, for the accessebarriers: not only do all threads execute the same number of
{z,y,a,b} in Figure 1, the behavior in whichy reads the barriers, they also execute the sateetualsequence of bar-
value 1 and reads the value 0 is not sequentially consistemigrs. Thus, both the above structurally incorrect code and the
since it does not reflect an interleaving in which the order fafllowing structurally correct code are erroneous in Titanium:
the individual execution sequences is preserved.

In order to enforce sequential consistemogmory barriers if (Ti.thisProc() % 2 == 0)
must be inserted to prevent reordering of memory operationsTi.barrier(); // even ID threads
by the compiler or architecture. Memory barriers prevent optilse
mizations such as prefetching and code motion, and can resuffi.barrier(); // odd ID threads
in an unacceptable performance penali§]] Thecycle detec-
tion algorithm computes the minimal set of memory barriefdre fact that Titanium barriers are textually aligned is central
needed to enforce sequential consister®i1[6]. Cycle de- 0 our concurrency analysis: not only does it guarantee that
tection can benefit from concurrency information, since it c&8de before and after each barrier cannot run concurrently, it

ignore pairs of memory operations that cannot run conc@so guarantees that code immediately following two different
rently [26,15]. barriers cannot execute simultaneously.

In order to enforce that a program correctly align barri-

ers, Titanium makes use dlingle-valuedexpressions 1.
3 Titanium Background Such expressions evaluate to the same value for all threads,

and a combination of programmer annotation and compiler
Titanium is a dialect of Java, but does not use the Java Virtierence is used to statically determine which expressions
Machine model. Instead, the end target is assembly code. #@r single-valued. A conditional may only contain a bar-
portability, Titanium is first translated into C and then contier, or a call to a method with a barrier, if it is guarded
piled into an executable. In addition to generating C coblg a single-valued expression: the above code is erroneous
to run on each processor, the compiler generates calls t@irge Ti.thisProc() % 2 == is not single-valued.
runtime layer based on GASNet][ a lightweight commu- Our concurrency analysis also exploits such expressions and
nication layer that exploits hardware support for direct reenditionals to determine which conditional branches can run
mote reads and writes when possible. Titanium runs on a wigcurrently.
range of platforms including uniprocessors, shared memoryOur concurrency analysis operates on the existing barriers
machines, distributed-memory clusters of uniprocessorsima program — no additional barriers are inserted. The analy-
SMPs (CLUMPS), and a number of specific supercomputgs also ignores the lock-bassghchronized  construct of
architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Originlava, since it is rarely used in Titanium programs.



Initially, fFlag = data = 0O

T1 T2
‘ a[setdata = 1] F ,@ y sees effect of|b sees effect ofi| possible sequential order
yes yes a=>zr=>y=>b
yes no none
no yes a=>y=>b=>z
‘ x [set Flag = 1] k ﬂ b [read data] no no y=>b=>a=ux

Fig. 1. A program fragment consisting of four memory accesses in two threads. The solid edges correspond to order in the
execution stream of each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2,
the second is illegal since it does not correspond to an overall execution sequence in which operations are not reordered within
a thread.

3.2 Memory Model The Titanium compiler produces an intraprocedural control
flow graph for each method in a program. We modify each of
these graphs to model transfer of control between methods by
Eéolitting each method call node into a call node and a return
dde. The incoming edges of the original node are attached to
the call node, and the outgoing edges to the return node. An
edge is added from the call node to the target method’s entry
3.3 Intermediate Language node, and from the target method’s exit node to the return

In this paper, we will operate on amermediate languageat node. Elguré illustrates this procedure. We also gdd edgesto
model interprocedural control flow due to exceptions.

allows the full semantics of Titanium butis simpler to analyze.
In particular, we rewrite dynamic dispatches as conditionals.

A call x.foo() , wherex is of typeAin the hierarchy 4 Concurrency Analysis
class A {

Titanium’s memory consistency semantics areretaxed
modelsimilar to Java’s, providing few ordering guarantee
In order to guarantee sequential consistency, memory barr
must be inserted into a program to enforce order.

void foo() { ... } Titanium’s structural correctness allows us to develop a sim-
} ple graph-based algorithm for computing concurrent expres-
sions in a program. The algorithm specifically takes advantage
class B extends A { of Titanium’s textually aligned barriers and single-valued ex-
void foo() { ... } pressions.
} The following definitions are useful in developing the anal-
. ysis:
gets rewritten to
if ([type of x is A]) Definition 4.1 (Single Conditional). A single conditionais
x.A$foo(); a conditional guarded by a single-valued expression.
else if (ftype of x is B]) . . .
x.B$f00(); Since a single-valued expression evaluates to the same re-

o - sulton all threads, every thread is guaranteed to take the same
We also rewriteswitch  statements and conditional expranch of a single conditional. A single conditional thus may

pressions 7/:) as conditionalif ... else ... state- contain a barrier, since all threads are guaranteed to execute
ments. it, while a non-single conditional may not.
3.4 Control Flow Graphs Definition 4.2 (Cross Edge).A cross edgen a control flow

graph connects the end of the first branch of a conditional to
The algorithms in this paper operate overatrol flow graph the start of the second branch.
that represents the flow of execution in a program. Nodes in
the graph correspond to expressions in the program, and a dEross edges do not provide any control flow information,
rected edge from one expression to another occurs whendimee the second branch of a conditional does not execute im-
target can execute immediately after the source. mediately after the first branch. They are, however, useful for



bar: foo:
bar: foo:
entry
entry I /
! J ‘ call foo ()
foo()
T foo () return
exit !
exit

Fig. 2. Construction of the interprocedural control flow graph of a program from the individual method flow graphs.

Algorithm 4.3.
ConcurrencyGraph(P : program) : graph
. LetG be the interprocedural control flow graph Bf as described if3.4.
. For each conditional’ in P {
If C'is not a single conditional:
Add a cross edge far' in G.
. } /I End for (2).
. For each barrieB in P:
DeleteB from G.
. ReturnG.

ONOUTAWNBE

Fig. 3. Algorithm 4.3 computes the concurrency graph of a program by inserting cross edges into its control flow graph and
deleting all barriers.

determining concurrency information, as shown in Theorebefinition 4.5 (Code Phase)For each barrier in a program,

4.4, its code phases the set of statements that can execute after
In order to determine the set of concurrent expressions i barrier but before hitting another barrier, including itself

program, we construct@ncurrency grapldz of the program ]

P by inserting cross edges in the interprocedural control flowFigure 4 shows the code phases of an example program.

graph of P for every non-single conditional and deleting afpinc® €ach code phase is preceded by a barrier, and each

barriers and their adjacent edges. Algoritds in Figure3 thread must execute the same sequence of barriers, each

illustrates this procedure. The algorithm runs in timg:Q thread executes the same sequence of code phases. This im-

wheren is the number of statements and expressiong,in Plies the following:

since it takes @n) time to construct the control flow graph th 46. T : dbin P
a program. The control flow graph is very sparse, containi rEma I. f thWO exp_reiﬁlona an (;n hcan fun concur-
only O(n) edges, since the number of expressions that d&gnty only itthey are in the same code phase.

execute immediately after a particular expressios con- Proof. Suppose: andb are not in the same code phase. Then
stant. Since at most cross edges are added to the contrmrey are preceded by two different barrids and B,. Con-
flow graph and at most @) t_)arrlers anq adjacent edges A der arbitrary occurrences afandb in any program exe-
deleted, the resulting graghis also of size On) ) cution in which they both occur. (If one or both don't occur,

The concurrency grap@ allows us to determine the set onen they trivially don’t run concurrently.) Since every thread
concurrent expressions using the following theorem: executes the same set of barriers, eitBerprecedesB; or

B, precedes3,. Sincea occurs after3, but before any other

Theorem 4.4. Two expressionaandb in P can run concur- barrier, and occurs after3, but before any other barrier, this

rently only if one is reachable from the other in the concuf'Plies thata andb are separated by a barrier. Thusandb
rency graphG. cannot run concurrently, since a barrier prevents the code be-

fore it and after it from executing concurrently. a

In order to prove Theorem.4, we require the following * A statement can be in multiple code phases, as is the case for a
definition: statement in a method called from multiple contexts.



B1: Ti.barrier();

L1: inti = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
La: . J .+: TithisProc(); Code Phase Statements
L5: if (Ti.numProcs() >= 1) { BL |LL1,L2,L3,L4,L5,16,08,L9
L6: i = Ti.numProcs();
) . ) . B2 L7,L9
B2: Ti.barrier(); B3 A
L7: j =
L8: }else {j +=1; }
L9: i = broadcast j from O;
B3: Ti.barrier();
LA: j += i;
Fig. 4. The set of code phases for an example program.
Now we can prove Theorerh4: is dominated by the depth first searches, each of which takes

¢ (of Th q O(n) time, sinceG has at most: nodes and ) edges. At
Proof (of Theorem4.4). Supposea and b can run CONCUr- a1, searches occur, so the algorithm runs in timfe?).
rently. By Lemma4.6, a and b must be in the same code

phaseS. By Definition 4.5, there must be program flows
from the initial barrierBg to ¢ andb that do not go through
barriers. There are three cases:

5 Feasible Paths

Case 1:There is a program flow frona to b in S. This

means the control flow graph of the program must contaithgyorithm 4.7 computes an over-approximation of the set of
path from the node fox to the node fob that does not pasS¢qncyrrent expressions. In particular, due to the nature of the
through a barrier. Sincé is contains all nodes and edges Qherprocedural control flow graph constructed§®4, the

the control flow graph except those corresponding to barrigfgnih first searches in Algoriths.7 can follow infeasible

it also contains such a path, e reachable frona. paths paths that cannot structurally occur in practice. Figure

. _ . 6illustrates such a path, in which a method is entered from
Case 2:There is a program flow frond to a in S. This 5,6 context and exits into another.

case is analogous to the one above. , )
In order to prevent infeasible paths, we follow the proce-

Case 3:There is no program flow from either to b or dure outlined by Rep<2B]. We label each method call edge
btoa in 5. Since there is a flow fronBg to ¢ and from B and corresponding return edge with matching parentheses, as
to b, a andb must be in different branches of a conditionainoWn in Figures. Each path then corresponds to a string of
C. Since only one branch of a single conditional can rqurentheses composed of the labels of the edges in the path. A
C must be a non-single conditional in order forand b to path is then infeasible, if in its corresponding string, an open

run concurrently. Without loss of generality, letbe in the Parenthesis is closed by a non-matching parenthesis.

first branch, and be in the second. Sinc€ is non-single, It is not necessary that a path’s string be balanced in order
it cannot contain a barrier, and the end of the first branchfds it to be feasible. In particular, two types of unbalanced
reachable irG from a without hitting a barrier. Similarlyp is  strings correspond to feasible paths:

reachable from the beginning of the second branch without

executing a barrier. Sino@ contains a cross edge from the

first branch ofC to the second, this implies that there is a_ p path with unclosed parentheses. Such a path corre-
path froma to b in G that does not pass through a barrier sponds to method calls that have not yet finished, as

By Theorem4.4, in order to determine the set of all con-  Shown in the left side of Figure.

current expressions, it suffices to compute the pairs of expres- A path with closing parentheses that follow a balanced
sions in which one is reachable from the other in the concur- prefix. Such a string is allowed since a path may start
rency graphG. This can be done efficiently by performing a in the middle of a method call and corresponds to that
depth first search from each expressiotrirAlgorithm 4.7in method call returning, as shown in the right side of Fig-
Figure5 does exactly this. The running time of the algorithm ure7.



Algorithm 4.7.

ConcurrentExpressiong P : program) : set

. Letconcur « 0.

. LetG <« ConcurrencyGraph(P) [Algorithm 4.3].

. For each accessin P {

Do a depth first search @ starting froma.

For each expressidreached in the search:
Insert(a, b) into concur.

.}/ End for (3).

. Returnconcur.

ONOUTAWNBE

Fig. 5. Algorithm 4.7 computes the set of all concurrent expressions in a given program.

bar: foo: baz:
Tt A
_vientr
o [ _--ems {
| - a
RN A - 1

1 call foo() ¥~ -3 call £oo ()
1

r-——=—=--- 1

f00 () return - .+ foo () return|
\ ' P il il

I__v_- ”/ I__V__

Ii| ] exit F~ } o

Fig. 6. Interprocedural control flow graph for two calls to the same function. The dashed path is infeasibldps{hce
returns to a different context than the one from which it was called. The infeasible path corresponds to the unbalanced string

I

bar: foo: bar: foo:

[ _entry | [ entry
| I Phe | I,
-l Phe 1 L / l
r-—--+--- EPhe 1
1 call foo () :/ ] call foo ()

r-——=—=-=-- 1 1 1

foo () return e q= 100 () return:v\ '-'-}'--
| e e e e = = So
l \ 1 l \\\ l
| I ~ | I
] exit [ ) SN oexit |
1

Fig. 7. Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call that has
not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.



Determining the set of nodes reach&blesing a feasible The second case above can easily be handled by visiting a
path is the equivalent of performing context-free languagede twice: once irsomecontext, and again in no context.
(CFL) reachability on a graph using the grammar for each p@ine first case, however, requires adding bypass edges to the
of matching parenthesés and),. CFL reachability can be control flow graph.
performed in cubic time for an arbitrary grammag]. Algo-
rithm 4.7 takes only quadratic time, however, and we desir
feasibility algorithm that is also quadratic. In order to acco
plish this, we develop a specialized algorithm that modifiggcall that the interprocedural control flow graph was con-
the concurrency grapty and the standard depth first searcktructed by splitting a method call into a call node and a re-
instead of using generic CFL reachability. turn node. An edge was then added from the call node to the

At first glance, it appears that a method must be revisitegiget method’s entry, and another from the target’s exit to the
in every possible context in which it is called, since the coreturn node. If the target’s exit is reachable (or for our pur-
text determines which open parentheses have been seenpagés, reachable without hitting a barrier) from the target's
therefore which paths can be followed. However, the followntry, then adding aypass edgéhat connects the call node
ing implies that it is only necessary to visit the method indirectly to the return node does affect the transitive closure of
single context: the graph.

. ) Computing whether or not a method’s exit is reachable
Theorem 5.1. Assuming nothing about the arguments, the Sk, ts entry is not trivial, since it requires knowing whether
of expressions that can be executed in a call to a methied . o the exits of each of the methods that it calls are reach-
the same regardless of the context in wfich called. able from their entries. Algorithr.2in Figure8 does so by
continually iterating over all the methods in a program, mark-
r{'ng those that can complete through an execution path that

the call to f can execute at most those expressions that SFBV calls previously marked methods, until no more methods

contained inf and reachable from its entry regardless of " be marked. In the first iteration (.)f loop 3, It. only marks
calling context. those methods that can complete without making any calls,

Inductive stepThe execution of makes method calls. By the®r equivalently, those methods that can complete using only a

inductive hypothesfs each method call iff can transitively single stack frame. In the seco_nd iteration, it only ma}rks those
hrﬁl\ can complete by only calling methods that don’t need to

execute the same expressions independent of the context! ) I valently. th thods that
addition, the call tof can execute exactly those expressio ake any calls, or equivaiently, tnose methods that can com-
plete using only two stack frames. In general, a method is

that are contained iff and reachable from its entry. The cal . o RN L
R ed in theith iteration if it can complete using and no

to f thus can execute the same set of expressions regarcﬁ'é :
of context. § lessthan, stack frames

%?1 Bypass Edges

Proof (by Induction).
Base caseThe execution off makes no method calls. The

Since the set of expressions that can be executed in gorem 5.3. Algorithm 5.2 marks all methods that can
method call is the same regardless of context, the set of nog¥@Plete using any number of stack frames.

reachable along a feasible path in a program's control ﬂcﬁyﬁoof. Suppose there are some methods that can complete but

graphis also independent of the context of a method call, W%ﬁat Algorithm5.2 does not find. Out of these methods, fet

WO ex ions: : o
fwo exceptions be the one that can complete with the minimum number of

— The nodes reachable following the method call. If tHgack framesj. In order for f to requirej frames to com-
method call can complete, then the nodes after a mettidgte, there must be an execution path throygthat only
call are reachable from a point before the method call. calls methods that require at mgst- 1 frames to complete.

— When no context exists, such as in a search that stdifi¢se methods must all be marked, siicgas the minimum
from a point within a method'. Then all nodes that aremethod that wasn’'t marked. Sin¢eequiresj frames, at least
reachable following any method call foare reachable. ©one of the methods called must requjre 1 frames and thus

S — was marked in th¢; — 1)th iteration of loop 3 above. Loop

2n this section, we make no distinction betwesachableand
reachable without hitting a barriefThe latter reduces to the for- # Note that just because a method only requires a fixed number of
mer if all barrier nodes are removed from each control flow graph.stack frames doesn’t mean that it can complete. A method may

% In order for induction be be applicable, the function call depth in contain an infinite loop, preventing it from completing at all, or
f must be finite. It is reasonable to assume that this is always théarriers along all paths through it, preventing it from completing
case, since in practice, an infinite function call depth is impossiblewithout executing a barrier. AlgorithrB.2 does not mark such
due to finite memory limits. methods.



Algorithm 5.2.

ComputeBypasse&P : programG1, ..., Gk : intraprocedural flow graph) : set
1. Letchange « true.

. Letmarked < 0.

. Whilechange = true {

change — false.

Setvisited(u) < false for all nodesu in Gy, ..., Gk.

For each method in P {

If f & marked andCanReach(entry(f), exit(f), Gy, marked) {

marked «— marked U {f}.
change <« true.

10. }ITENnd if (7).

11. } // End for (6).

12. } // End while (3).

13. Returnmarked.

CoNo WD

14. Procedur€anReach(u,v : vertex,G : graph,marked : method set: boolean:
15. Setvisited(u) < true.

16. Ifu=wv:

17. Returntrue.

18. Else Ifu is a method call to functiop andg ¢ marked:

19. Returnfalse.

20. Foreachedgl:, w) € G {

21. If visited(w) = false andCanReach(w, v, G, marked):
22. Returnirue.

23. }// End for (20).

24. Returnfalse.

Fig. 8. Algorithm 5.2 uses each method’s intraprocedural control flow graph to determine if its exit is reachable from its entry.



3 will thus iterate at least once more, and sirffceow has a nodes that can be reachable in a feasible path from the source.
path in which it only calls marked methodéwill be marked, Since it visits each node at most twice, it runs in timg:D
which is a contradiction. Thus Algorith®2 marks all meth-

ods that can complete. D 5.3 Feasible Concurrent Expressions

Algorithm 5.2 requires quadratic time to complete in theytting it all together, we can now modify Algoritht? to
worst case. Each iteration of loop 3 visits at mashodes. find only concurrent expressions that are feasible. As in Algo-
Only k iterations are necessary, whetes the number of yithm 4.7, the concurrency grapfi must first be constructed.
methods in the program, since at least one method is marken the intraprocedural flow graphs of each method must be
in all but the last iteration of the |00p. The total running t|m§onstructed, A|g0r|thn52 used to find the methods that can
is thus Qikn) in the worst case. In practice, only a small numgomplete without hitting a barrier, and the bypass edges in-
ber of iterations are necessargnd the running time is closerserted intor. Then Algorithm5.4 must be used to perform
to O(n). ) _the searches instead of a vanilla depth first search. Algorithm

After computing the set of methods that can complete, itdsgin Figure10illustrates this procedure.
straightforward to add bypass edges to the concurrency grapfihe setup of Algorithns.6 calls Algorithm5.2, so it takes
G: for each method cadl, if the target ofc can complete, add O(kn) time. The searches each take tim@) and at most.
an edge from to its corresponding method returnThis can gre done, so the total running time i$/@ + n2) = O(n?),
be done in time On). guadratic as opposed to the cubic running time of generic CFL

reachability.

5.2 Feasible Search

Once bypass edges have been added to the giaphmod- 6  Evaluation

ified depth first search can be used to find feasible paths. A

stack of open but not yet closed parenthesis symbols musteevaluate our concurrency analysis using two clients: static

maintained, and an encountered closing symbol must matabe detection and enforcing sequential consistency at the lan-
the top of this stack, it the stack is nonempty. In addition, geage/compiler level. We use the following set of benchmarks

noted above, the modified search must visit each node twilcs,our evaluation:

once in no context and once gomecontext. Algorithm5.4

in Figure9 formalizes this procedure. — gas [5] (8841 lines): Hyperbolic solver for a gas dynam-
ics problem in computational fluid dynamics.

Theorem 5.5. Algorithm 5.4 does not follow any infeasible — gsrb (1090 lines): Nearest neighbor computation on a

paths. regular mesh using red-black Gauss-Seidel operator. This
] ] ] ) computational kernel is often used within multigrid algo-

Proof. Consider an arbitrary infeasible pagh In order for rithms or other solvers.

p to be infeasible, the labels alonpgmust form a string in - _ |, fact (420 lines): Dense linear algebra.

which an open pare_nthes{@ is clos_ed by a no_n-matChlng — pps [4] (3673 lines): Parallel Poisson equation solver us-

parenthesig ;. Consider the execution of Algorithi.4 on ing the domain decomposition method in an unbounded

this path. An open parenthesis is pushed onto the the stack yomain.
when it is encountered, so before any close parentheses a_respmv (1493 lines): Sparse matrix-vector multiply.
encountered, the top of the stack is the most recently opened
parenthesis. A close parenthesis causes the top of the s@gkline counts for the above benchmarks underestimate the
to be popped, so in general, the top of the stack is the magiount of code actually analyzed, since all reachable code in
recently opened parenthesis that has not yet been closed. N@v37,000 line Titanium and Java 1.0 libraries is also pro-
considers when the labe) ; is reached. The symb@), must cessed.
be on the top o$, since)z closes it. But Algorithnb.4checks
the top of the stack against the newly encountered label, %ui Static Race Detection
since they don’t match, it does not proceed alpng o
. . _ .. Using our concurrency analysis and a thread-aware alias anal-

Since G contains bypass edges and Algoritlii visits v qig “\ye puilt a compile-time data race analysis into the Tita-

each node both in some context and in no context, it finds gfl, v, compiler. Static information is generally not enough to

® Even on the largest example we tries45,000 lines of user and determine with certainty that two memory accesses compose
library code, 1226 methods), Algorithm2 required only five it- & race, so nearly all reported races are false positives. (The
erations to converge. correctness of the alias and concurrency analyses ensure that



Algorithm 5.4.
FeasibleSearckw : vertex,G : graph) : set

1. Letvisited «— 0.
2. Lets < 0.
3. Call Feasible DF S (v, G, s, visited).
4. Returnvisited.
5. Procedurd’easible DF'S (v : vertex,G : graph,s : stack,visited : se):
6. Ifs=0{
7. If no_context_mark(v) return.
8 Setno_context_mark(v) < true.
9. }//Endif (6).

10. Else{

11. If context_mark(v) return.

12. Setcontext-mark(v) «— true.

13. }//End else (10).

14. wisited « visited U {v}

15. For each edg@,u) € G {

16. Lets’ «+ s.

17. If label (v, u) is a close symbol and # 0 {

18. Leto < pop(s’).

19. If label(v, u) does not match:

20. Skip to next iteration of 15.

21.  }//Endif (7).

22. Else iflabel(v, u) is an open symbol:
23. Pushabel (v, u) ontos’.

24, Call FeasibleDFS(u, G, s).
25. }// End for (15).

Fig. 9. Algorithm 5.4 computes the set of nodes reachable from the start node through a feasible path.

Algorithm 5.6.
FeasibleConcurrentExpressiongP : program) : set
1. LetG < ConcurrencyGraph(P) [Algorithm 4.3.
2. For each method in P {
3. Construct the intraprocedural flow gra@gh of f.
4. Foreach barrieBin f {
5 DeleteB from G .
6. }//End for (4).
7. } /1 End for (2).
8. Letbypass — ComputeBypasse&P, G1, ..., Gx) [Algorithm 5.2].
9. For each method call and return pair- in P {
10. If the targetf of ¢, r is in bypass:
11. Add an edgéc, r) to G.
12. } // End for (9).
13. For each expressianin P {
14. Letvisited < FeasibleSearcla, G) [Algorithm 5.4].
15. For each expressiéne visited:
16. Insert(a, b) into concur.
17. } I/ End for (13).
18. Returrconcur.

Fig. 10. Algorithm 5.6 computes the set of all concurrent expressions that can feasibly occur in a given program.



no false negatives occur.) We therefore consider a race de@®@ Sequential Consistency

tor that reports the fewest races to be the most effective. . . o
In order to enforce sequential consistency in Titanium, we

insert memory barriers where required in an input program.
Table 1. Number of data races detected by tieselevel of These memory barriers can be expensive to execute at run-
analysis. time, potentially costing an entire roundtrip latency for a re-

mote memory access. The memory barriers also prevent code

BenchmarkRaces Detected motion, so they directly preclude many optimizations from
gas 1410 being performed. The static number of memory barriers gen-
gsrb 33 erated provides a rough estimate for the amount of optimiza-
lu-fact 7 tion prevented, but the affected code may actually be unreach-
pps 80 able at runtime or may not be significant to the running time
spmv 15 of a program. We therefore additionally measure the dynamic

number of memory barriers hit at runtime, which more closely
estimates the performance impact of the inserted memory bar-
riers.

Number of Data Races Detected ) . . .
12 Table 2. Number of static and dynamic barriers required by

s L thebaselevel of analysis.
% 038 Static MemoryDynamic Memory
8 06 | Benchmark Barriers Barriers
E gas 346 3.3M
E 0.4 gsrb 128 120K
S 52l lu-fact 14 1.6M
i pps 286 94M

0= ‘ ‘ ‘ ‘ spmv 34 9.4M

gas gsrb lu-fact pps spmv
Benchmark

\I:l base M concur Cfeasible \

Fig. 11. Fraction of data races detected at compile-time con Number of Static Memory Barriers

pared tobase

I
[N

[N
L

o
©
.

Figurellcompares the effectiveness of three levels of rag
detection:

I
~
\

— base only alias analysis is used to detect potential race
— concur: our basic concurrency analysi$4] is used to
eliminate non-concurrent races

Fraction Compared to base
=} =}
N o

o
\
\

gas gsrb lu-fact pps spmv

— feasible our feasible paths concurrency analysjs)(is Benchmark
used to eliminate non-concurrent races |Ebase Wconcur Ofeasible |

For reference, the number of races detected byp#seanal-

ysis is reported in Tablg. ]
The results show that the addition of concurrency anaIyLJ

can eliminate most of the races reported by our detector. Two

of the benchmarks do not benefit at all from the basic concur-_. .

rency analysis, but all benefit considerably from the feasibIeF'gurelz compares the. number of memory barner; gener-

paths analysis. The concurrency analysis should be of sigmf?d for each program using different levels of analysis:

icant help to users of our race detector by weeding out marny base cycle detection is used to determine the minimal

false positives. number of memory barriers

Fig. 12. Fraction of memory barriers generated at compile-
e compared thbase



Number of Dynamic Memory Barriers 7 Related Work

12

An extensive amount of work on concurrency analysis has
0.8 been done for both languages with dynamic parallelism and
SPMD programs. Duesterwald and Soffa presented a data
flow analysis to compute theappened-beforandhappened-
after relation for program statement$1]. Their analysis is
02+ — for detecting races in programs based on the Ada rendezvous
model R7]. Masticola and Ryder developed a more precise
s gsb lufact  pps spmv non-concurrency analysis for the same set of progréttis [
Benchmark The results are used for debugging and optimization. Jeremi-
[@base W concur Dfeasible | assen and Eggers developed a static analysis for barrier syn-
chronization for SPMD programs with non-textual barriers
rT{61_4]. They used the information to reduce false sharing on
cache-coherent machines.

Others besides Duesterwald and Soffa and Masticola and
Ryder have developed tools for race detection. Flanagan and
Freund presented a static race detection tool for Java based

— concur: our basic concurrency analysi4 is addition- On type inference and checking?. Boyapati and Rinard

ally used to eliminate memory barriers for pairs of nofi€veloped a type system for Java that guarantees that a pro-
concurrent memory accesses gram is race-free7]. Tools such as Erase4] and TRaDe

[9] detect races at runtime instead of statically. Other static
— feasible our feasible paths concurrency analygjS)(is and dynamic race detection schemes have also been devel-
additionally used to eliminate memory barriers for paitsped p8,3,10,8,22].

of non-concurrent memory accesses The concept of sequential consistency was first defined by
Lamport [L7]. Shasha and Snir provided some of the founda-
tional work in enforcing sequential consistency from a com-

Figure 13 compares the resulting dynamic counts at runtimidl!er level when they introduced the idea ofcle detection
For reference, the number of static and dynamic memory bi#-general parallel program&3|. Krishnamurthy and Yelick

riers required by théaselevel of analysis is show in TablePresented a practical cycle detection analysis for the restricted
2. case of SPMD programdl §]. They also used concurrency

analysis to reduce the number of memory barriers, but their
The results show that our analysis, at its highest precisi@an-textual barriers forced them to generate both an opti-
is very effective in reducing the numbers of both static amgized and an unoptimized version of the code and to switch
dynamic memory barriers. In three of the benchmarks, neastween them at runtime depending on how the barriers lined
all runtime memory barriers are eliminated, and in anoth@p. Midkiff and Padua outlined some of the implementation
the number of memory barriers hit is reduced by a large fragchniques that could violate sequential consistency and de-
tion. In only one benchmarigas , is our analysis ineffective: veloped some static analysis ideas, including a concurrent
while it does reduce the number of concurrent pairs detectegtic single assignment form in a paper by Lee et H].[
it does not significantly reduce the number of memory agtore recently, Sura et al. used cooperating escape, thread

cesses that are a membersoimepair (134 undebasecom-  structure, and delay set analyses to provide sequential con-
pared to 124 unddeasiblg, preventing cycle detection fromsjstency cheaply in Javag).

benefiting from the analysis.

0.6

0.4+

Fraction Compared to base

Fig. 13. Fraction of memory barriers executed at runti
compared tdase

Our work differs from previous work in that we develop an

It is interesting to note that eliminating infeasible paths @1alysis specifically for SPMD programs with textual barri-
effective in three of the four benchmarks for which our ang@!S. This allows our analysis to be both sound, unlike that of
ysis is useful. It should also be noted that most of the remalffishnamurthy and Yelick, and precise. In addition, our anal-
ing memory barriers are due to imprecision in our suppoytsis _takes adva_ntage of single-valued expressions, which no
ing analyses, such as the inability of our alias analysis to di€Vvious analysis does.
tinguish array indices. Even so, our analysis significantly re-We presented a more abstract version of our concurrency
duces the number of memory barriers required for enforciagalysis and its application to sequential consistency in a pre-
sequential consistency. vious paper 15]. That analysis was slightly less precise, fol-



lowed infeasible program paths, and would have been mugh D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect
more difficult to modify to ignore them. of Java without data races. ROPSLA '00: Proceedings of
the 15th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applicatigrages 382—
i 400, New York, NY, USA, 2000. ACM Press.
8 Conclusion 4. G.T. Balls.A Finite Difference Domain Decomposition Method

In this paper. we made several contributions to the founda- Using Local Corrections for the Solution of Poisson’s Equation
paper, PhD thesis, Department of Mechanical Engineering, University

tion of parallel program anal_y_f,is, specifically the concurrency ¢ ~aiifornia at Berkeley, 1999.

analysis problem of determining whether two statements can m. Berger and P. Colella. Local adaptive mesh refinement
execute concurrently. We introduced a graph representation of for shock hydrodynamicsJournal of Computational Physics
parallel programs with textually aligned barriers and two dif- 82(1):64-84, May 1989. Lawrence Livermore Laboratory Re-
ferent concurrency analyses. The first was a basic concurrencyport No. UCRL-97196.

analysis that uses barriers and single-valued expressions, & - Bonachea. GASNet specification, v1.1.  Technical Re-
the second a more complex one that only explores those ex-port UCB/CSD-02-1207, University of California, Berkeley,
ecution paths across function calls that can occur in practice. November 2002.

- . - . C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
We experimented with several benchmark programs using two programming: preventing data races and deadlocksO@P-

client problems, data race detection and enforcing a sequen-g 5 'g2: Proceedings of the 17th ACM SIGPLAN conference
t|a”y COﬂSIStent eXGCUtIOH Our eXpel’ImentS ShOWGd that the on object_oriented programming, systerﬁsl |anguagesl and ap-

analyses were able to eliminate a large fraction of the false plications pages 211-230, New York, NY, USA, 2002. ACM
positives reported by a race detector in all programs and most Press.
of the memory barriers required to provide sequential consi§- G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F.
tency in all but one program. We believe the efficiency and Stark. Detecting data races in Cilk programs that use locks.
precision of our concurrency analysis make it a very useful LnnSPF;?:Ilgilgc:zfﬁ;?g%?ﬂjré??téi?&?ezggiil g%M;OémpNoei“m
:?eor!n analyzing parallel programs with textually aligned bar York, NY, USA, 1998. ACM Press. |

) . . o . 9. M. Christiaens and K. De Bosschere. TRaDe, a topological ap-

In addition to aiding in optimizations and helping to de-  hr5ach to on-the-fly race detection in Java programsPri

tect parallel programming errors, the ability to perform such ceedings of the Java Virtual Machine Research and Technology
analyses may affect a language designer’s choice of program-Symposium (JVM '01April 2001.

ming model semantics. Simpler programming models, sulth A. Dinning and E. Schonberg. Detecting access anomalies in
as those that prohibit races, use synchronous communication,programs with critical sections. IRADD '91: Proceedings of
or ensure a Strong memory modeL may be feasible if accu- the 1991 ACM/ONR WOI’kShOp on Parallel and distributed de-

rate analyses can be developed to enable optimizations whilePu99ing pages 85-96, New York, NY, USA, 1991. ACM Press.
. . .. . ..E. Duesterwald and M. Soffa. Concurrency analysis in the
ensuring a stronger semantics. Our analysis is one piece 0f a X
presence of procedures using a data-flow frameworkSyim-

Iarger.plc.ture on th? kinds of p_ara"e"sm constructs and syn- posium on Testing, analysis, and verificatidfictoria, British

chronization operations for which accurate concurrency anal- ~qjumbia. October 1991.

yses can be developed. 12. C. Flanagan and S. N. Freund. Type-based race detection for
Java. InPLDI '00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementa-

Acknowledgments tion, pages 219-232, New York, N, USA, 2000. ACM Press.
13. D. Gay.Barrier Inference PhD thesis, University of California,
We would like to thank Jimmy Su, who helped us a great dea| Berkeley, May 1998.
. . y .p g. . 13. T. Jeremiassen and S. Eggers. Static analysis of barrier synchro-
both in developing the concurrency algorithms and in imple-* ~ .~ " gy .
. . . nization in explicitly parallel programs. IRarallel Architec-
menting them. We would also like to thank the Titanium group

. tures and Compilation Techniquelslontreal, Canada, August
for their valuable support. 1994.

15. A. Kamil, J. Su., and K. Yelick. Making sequential consis-
tency practical in Titanium. ISupercomputing 2008lovember

References 2005. To appear.
16. A. Krishnamurthy and K. Yelick. Analyses and optimizations
1. A. Aiken and D. Gay. Barrier inference. Principles of Pro- for shared address space progradwairnal of Parallel and Dis-
gramming Language$an Diego, California, January 1998. tributed ComputationsL996.
2. L. O. Andersen.Program Analysis and Specialization for thel7. L. Lamport. How to make a multiprocessor computer that cor-
C Programming Language PhD thesis, DIKU, University of rectly executes multiprocess program&EE Transactions on

Copenhagen, May 1994. Computers28(9):690-691, September 1979.



18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Lee, S. Midkiff, and D. Padua. Concurrent static single as-
signment form and constant propagation for explicitly parallel
programs. InProceedings of 1999 ACM SIGPLAN Symposium
on the Principles and Practice of Parallel Programmjrigay
1999.

J. Lee and D. Padua. Hiding relaxed memory consistency with
compilers. InParallel Architectures and Compilation Tech-
nigues Barcelona, Spain, September 2001.

S. Masticola and B. Ryder. Non-concurrency analysisPrin-
ciples and practice of parallel programmin&an Diego, Cali-
fornia, May 1993.

R. H. B. Netzer and B. P. Miller. What are race conditions?:
Some issues and formalizationACM Lett. Program. Lang.
Syst, 1(1):74-88, 1992.

R. O'Callahan and J.-D. Choi. Hybrid dynamic data race detec-
tion. In PPoPP '03: Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming
pages 167-178, New York, NY, USA, 2003. ACM Press.

T. Reps. Program analysis via graph reachability. IURS
'97: Proceedings of the 1997 international symposium on Logic
programming pages 5-19, Cambridge, MA, USA, 1997. MIT
Press.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Sys.5(4):391-411, 1997.

D. Shasha and M. Snir. Efficient and correct execution of par-
allel programs that share memoACM Trans. Program. Lang.
Syst, 10(2):282-312, 1988.

Z. Sura, X. Fang, C. Wong, S. Midkiff, and D. Padua. Com-
piler techniques for high performance sequentially consistent
Java programs. IRrinciples and Practice of Parallel Program-
ming Chicago, lllinois, June 2005.

United States Department of Defense. Reference manual for
the Ada programming language. Technical Report ANSI/MIL-
STD-1815A, Washington, D.C., January 1983.

C. von Praun and T. R. Gross. Static conflict analysis for multi-
threaded object-oriented programs. RhDI '03: Proceedings

of the ACM SIGPLAN 2003 conference on Programming lan-
guage design and implementatjqgmages 115-128, New York,
NY, USA, 2003. ACM Press.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Kr-
ishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and
A. Aiken. Titanium: A high-performance Java dialect.\Work-
shop on Java for High-Performance Network Computiatn-
ford, California, February 1998.



