
1

On Identifying Critical Nuggets Of Information
During Classification Tasks

David Sathiaraj and Evangelos Triantaphyllou

Abstract—In large databases, there may exist critical nuggets - small collections of records or instances that contain domain-specific
important information. This information can be used for future decision making such as labeling of critical, unlabeled data records and
improving classification results by reducing false positive and false negative errors. This work introduces the idea of critical nuggets,
proposes an innovative domain-independent method to measure criticality, suggests a heuristic to reduce the search space for finding
critical nuggets, and isolates and validates critical nuggets from some real world data sets. It seems that only a few subsets may qualify
to be critical nuggets, underlying the importance of finding them. The proposed methodology can detect them. This work also identifies
certain properties of critical nuggets and provides experimental validation of the properties. Experimental results also helped validate
that critical nuggets can assist in improving classification accuracies in real world data sets.

Index Terms—Data Mining, Classification, Critical Nuggets, Outliers, Classification Accuracy, Class Boundary, Duality.

✦

1 INTRODUCTION
In recent times, detecting patterns and outliers has
emerged as an important area of work in the field of data
mining. It has several applications including detecting
fraud in business transactional data [1], identifying net-
work intrusions [1], isolating abnormal trends in time-
series data [2] and picking out suspicious criminal activ-
ity [3]. A lot of work in data mining has been devoted to
finding interesting patterns or rules in data sets ([4], [5]
and [6]). In [7], research was extended to the mining of
outliers and the concept of distance-based outliers was
proposed to identify records that are different from the
rest of the data set. A good definition of an outlier is
that of [8], an outlier is an observation that deviates so much
from other observations as to arouse suspicions that it was
caused by a different mechanism. Distance-based measures
as in [9], [10] and [1] have been used in algorithms
to delineate outliers or abnormal records from normal
records. However, not much work has focussed on find-
ing critical nuggets of information that may be hidden in
data sets. These nuggets of information may not always
be detected by pattern mining methods or by distance-
based outlier detection methods as nuggets may not
conform to a specific pattern and may not be outliers.

A simple visual example is outlined in Fig. 1, where
the data set with protrusions around the circular region
(Fig. 1(b)) might be considered more interesting than
the simpler circular region (Fig. 1(a)). The protrusions
serve as critical nuggets of information that are more
interesting as these areas can be studied further for
improved classification results. In real life, one such

• D. Sathiaraj is with the NOAA Southern Regional Climate Center and
the Department of Computer Science, Louisiana State University, Baton
Rouge, LA, 70803. E-mail: davids@srcc.lsu.edu

• E. Triantaphyllou is with the Department of Computer Science, Louisiana
State University, Baton Rouge, LA, 70803. E-mail: trianta@lsu.edu

example is if one were asked to identify benign tumors
that are very close to becoming malignant. Such data
records, if they were to exist in a data set, would
not ‘deviate so much’ from both benign and malignant
observations, but instead would lie extremely close to
the class boundary separating the benign and malignant
classes. They may not necessarily ‘deviate enough’ to be
captured by distance-based outlier detection methods.
In tight elections, the undecided voters are crucial in
deciding the outcome. The problem of identifying the
undecided voters and the attributes that can tilt them to
the opposite side is valuable information. Another exam-
ple is to predict cases from bank loan data that are very
close to bankruptcy. In this setting, the important task is
to identify cases before they become bankrupt. In many
applications the problem is not of finding individual
outliers, but instead, of finding critical nuggets (subsets
of data) that provide valuable information which in turn
can be used for improved classification results and a
better understanding of false positive and false negative
errors.

This paper considers the notion of identifying subsets
of critical data instances in data sets. Critical nuggets
of information can take the following form during clas-
sification tasks: small subsets of data instances that lie
very close to the class boundary and are sensitive to
small changes in attribute values, such that these small
changes result in the switching of classes. Such critical
nuggets have an intrinsic worth that far out-weighs other
subsets of the same data set. In classification tasks, con-
sider a data set that conforms to a certain representation
or a classification model. If one were to perturb a few
data instances by making small changes to some of
their attribute values, the original classification model
representing the data set changes. Also, if one were to
remove those data instances, the original model could
change significantly. The magnitude of changes to the
original model provides clues to the criticality of such

Digital Object Indentifier 10.1109/TKDE.2012.112 1041-4347/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

(a) An uninteresting circular region. (b) Interesting protrusions around the circular region.

Fig. 1: Grey dots indicate points of one class while black dots indicate points of another class.

data instances, as more critical data instances tend to
impact the model more significantly than data instances
that are comparatively non-critical. This idea is exploited
in this paper to introduce the notion of critical nuggets,
to define a metric for criticality and for the eventual
mining of critical nuggets.1

This paper is organized as follows. Section 2 provides
a discussion on some related work from the literature.
A motivation behind finding critical nuggets is also
provided. In Section 3, a criticality metric, CRscore is
defined. This metric is used to calculate the criticality
of a subset of data instances. In this section algorithms
have been provided to help in calculating the metric
and to reduce the search space by isolating approximate
class boundaries in training data. In Section 4, a set
of experiments are presented. The experiments were
conducted on some real world data sets. For each of the
data sets, critical nuggets were identified and properties
such as the ones related to some duality relations were
validated. Experimental results on how critical nuggets
can help in improving classification accuracy have been
provided. Finally, Section 5 presents some concluding
remarks and some ideas for future work.

2 RELATED WORK AND PROBLEM MOTIVA-
TION
In classification problems, the main goal is to derive
an accurate representative data model that can correctly
classify new test data instances. The accuracy of the
classification model can be affected by the presence of
outliers in a data set and the inability to correctly classify
data records near the boundary.

Considering the first case of outliers, are critical
nuggets different from outliers and can existing ap-
proaches in outlier detection help in finding critical

1. From this point on, the use of the terms ‘critical nuggets’ and
‘critical sets’ refer to the same concept.

nuggets? Critical nuggets in certain cases may involve
outliers, but this may not always be true. In the example
of the previous section, cells in tumors may not show
anomalous behavior on an individual basis but collec-
tively, such cells may contain critical pieces of informa-
tion. In [11], the authors note that the performance of a
distance-based outlier detection method ‘greatly relies on
a distance measure, defined between a pair of data instances,
which can effectively distinguish between normal and anoma-
lous instances. Defining distance measures between instances
can be challenging when the data is complex.’ Moreover,
critical nuggets that belong to a data set may not be at a
great ‘distance’ from the other ‘normal’ points, and may
end up being classified as ‘normal.’ For a comprehensive
survey on outlier detection methods, please refer to
the extensive survey in [11]. In the field of distance-
based outlier detection, researchers have focussed on
proposing algorithms that reduce the time complexity
O(n2) of calculating distances [12], [9], [10] and [13].
Work has also been done on density-based outlier de-
tection such as [14] where outliers are defined as objects
that show anomalous trends with respect to their local
neighborhoods and tend to lie in a less dense area with
respect to a more dense local neighborhood. In [15], the
concept of density-based detection is extended to cluster-
based outlier detection where the approach does not
only find single point outliers but instead clusters of
outliers. Intuitively, cluster-based outlier methods may
not necessarily lead to identifying critical areas such as
the protrusions in Fig. 1(b) which do not lie at a great
‘distance’ from the rest of the points.

With this differentiation between critical nuggets and
outliers, can critical nuggets be found among data
records near the boundary? One can utilize an intuition
that is motivated by two commonly occurring scenarios
in classification algorithms.

1) Points near the boundary, in general, are critical:
The deciding factor for most classification algorithms

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

is how accurately the algorithm classifies the points
near the class boundaries (see also [6]). The points
that are far from the class boundaries are the “slam-
dunk”, easy cases, where the impact of misclassifi-
cation is pretty minimal. However, the points near
the class boundaries are more susceptible to misclas-
sification. These points are critical in deciding the
accuracy of any classification algorithm. The need for
understanding this problem can be best explained
by the real world example of a data set describing
some type of cancer related cases. Most classification
algorithms can easily classify a full-blown cancer case
or a clearly cancer-free case. On the other hand, the
border-line cases which may exhibit subtle symptoms
of cancer are critical, as early detection can save
a life. Hence, uncertain regions in and around the
class boundaries can be crucial for identifying critical
nuggets.

2) Certain boundary features can be critical: Secondly,
as a corollary to the first scenario, there are certain
regions along the boundary (and hence the boundary
points near those regions) where the problem of
classification becomes more difficult, as compared
to less problematic boundary points. As a simplistic
example, consider a geographical data set that corre-
sponds to a political boundary. Classifying records
near sharply changing outlines (such as along a
complex sea coast of a political boundary) is more
difficult than straight edges of the boundary. For
more complex data sets, there maybe certain inherent
complex properties that render the points near the
boundary difficult to classify. Such regions have a
higher potential for harboring critical nuggets.

In summary, using the first scenario, the search for
critical nuggets is narrowed to a region near the bound-
ary separating the classes. On the basis of the second
scenario, where certain boundary features are more com-
plex than others, the criticality metric (the CRscore) has
been defined in such a way that it yields higher scores
for sets of data records that lie near complex boundary
features. In other words, the greater the complexity of
a boundary feature, the higher the probability of mis-
classification becomes, resulting in higher scores being
assigned for points near that complex boundary.

3 PROBLEM DESCRIPTION

3.1 Formal Notation
Consider a training data set Tr comprised of m data
instances, n attributes and two classes, denoted as ‘+’
and ‘-’ (these names are arbitrary). Consider also a
sample neighborhood N to be a subset of Tr, comprised
of d data instances (i.e., number of rows in N) of the
data set Tr.

Besides the above notation, the following notation will
also be used:
• C - any classification algorithm.
• T+

r - the subset of Tr comprised of only the ‘+’ class.
• T−r - the subset of Tr comprised of only the ‘-’ class.

• A - the set of attributes in Tr denoted as
{A1, A2, A3, ..., An}.

• D - the set of the data instances in Tr denoted as
{D1, D2, D3, ..., Dm}.

• d+j - the number of instances in N that switch classes
when attribute Aj is increased by δj .

• d−j - the number of instances in N that switch classes
when attribute Aj is decreased by δj .

• N [Aj] - column vector of size d×1, formed by choos-
ing only attribute Aj from matrix (neighborhood) N .

• N [A1 : Aj] - matrix of size d× j, formed by choosing
attributes A1 through Aj .

• N1.N2 - appending two matrices, column-wise (e.g.,
if N1 and N2 were each of size 2 × 3, the combined
matrix would be of size 2× 6).

• M0 - the model obtained by using classification al-
gorithm C on training set Tr.

• P0 - the vector of predicted class values by model M0

when applying M0 on a neighborhood of instances,
N .

• B+ - the set of ‘+’ points near the boundary separat-
ing the two classes, ‘+’ and ‘-’.

• B− - the set of ‘-’ points near the boundary separat-
ing the two classes, ‘+’ and ‘-’.

• B+ - the set of ‘+’ points not near the boundary
separating the two classes, ‘+’ and ‘-’.

• B− - the set of ‘-’ points not near the boundary
separating the two classes, ‘+’ and ‘-’.

From the above definitions, it follows that: |T+
r | =

|B+|+ |B+|, |T−r | = |B−|+ |B−| and |Tr| = |T+
r |+ |T−r |,

where |X | denotes the cardinality of set X .

3.2 Definition of Criticality
One can look at criticality as the intrinsic worth of
a subset of records. This worth is realized when the
records are collectively removed from the data set or
their attribute values undergo perturbation. Initial steps
in defining the critical metric (CRscore) relied on the
effect of removing a neighborhood of data instances on
a classification model. A classification model M0 was
initially derived by applying a classification algorithm
C on the training data Tr. Then a neighborhood of
data instances, N , was removed from Tr and a new
classification model M1 was obtained by applying C
on Tr − N . The difference in predictions made by M0

and M1, divided by the number of data instances in N ,
was initially used as the criticality measure, CRscore.
The greater the difference in predictions between M0

and M1, the higher the CRscore was and vice versa.
Some 2-dimensional data sets were used to validate
this approach. However, this metric could not isolate
all the critical areas even though some of the critical
areas were obvious during a simple visual inspection of
the 2-dimensional validation data set. Hence, a different
approach was considered and upon validation using the
2-dimensional data sets, this new approach in deriving
the CRscore is outlined. More experiments (as described
in Section 4) with some real world data sets further
support the choice of this metric.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Consider a training data set Tr with m data in-
stances, each instance having n attributes denoted as
Aj (jε{1, 2, ..., n}). The underlying assumption is that all
attributes are numeric and not categorical. From Tr, form
a neighborhood N , by choosing a data instance Di as a
center and finding a group of points that belong to the
same class as Di and lying within a distance R from Di.
For simplicity, let us say that the neighborhood N is com-
prised of d data instances. The selection of parameters
R and Di used in forming a neighborhood N is further
described in Section 3.8. First, a classification model M0

is generated by applying a classification algorithm C to
the training data set Tr. Using the classification model
M0, one can predict the class labels for the different
data instances in question. For the d instances in neigh-
borhood N , consider an attribute Aj . Also, for the d
instances, the attribute Aj can be increased or decreased
in magnitude. A parameter denoted by δj is used for this
and δj varies for different attributes in neighborhood N .
The calculation of this parameter is further explained in
Section 3.5. After increasing Aj by an extent δj for just
the d instances, the classification model M0 for the new
class labels for the d instances is queried. The average
number of data instances that have switched classes in
neighborhood N is computed and is denoted as w+

j . If
all the data instances in N switch classes, then one can
infer that N is very sensitive to changes with respect to
attribute Aj . The same test is applied on N by decreasing
Aj by the same extent δj and find w−j by querying the
classification model M0 for the new class labels. For the
attribute Aj , the average of w+

j and w−j is computed to
get wj . Repeating this process for all n attributes, the
average of the wj scores is computed as the CRscore for
the neighborhood N .

Formally, the critical score is defined as

CRscore =

∑n

j=1
(wj)

n
, (1)

where: wj =
w

+

j
+w

−

j

2
, w+

j =
d
+

j

d
and w−j =

d
−

j

d
.

3.3 Properties of the Critical Score
Based on the score developed above, the following prop-
erties are outlined:
• Each wj value lies in the interval [0,1]. Each wj value

is calculated by averaging w+

j and w−j and w+

j ε[0, 1]

and w−j ε[0, 1]. Hence, wjε[0, 1].
• CRscoreε[0, 1], as there are n instances of wj and

CRscore is averaged over n.
• In calculating the critical score, the main idea is to

find as many attributes that are sensitive to small
changes (such as the increase and decrease of Aj

by δj) that propel an entire subset from one class to
another. The greater the number of attributes that are
sensitive to such changes, the higher is the resulting
CRscore.

• A neighborhood of data instances N1 is said to be
more critical than a neighborhood N2, if and only if
CRscore(N1) > CRscore(N2).

Require: Tr: the training set, N : a neighborhood of data in-
stances and R: a distance parameter used in creating the
neighborhood set, N

1: M0 = Model resulting from applying C on training set, Tr

2: m = number of data instances in Tr

3: n = number of attributes in Tr

4: ScoresArray = φ
5: for each j in {1,2, ..., n} do
6: δj = max(N [Aj]) - min(N [Aj]) {Finding the maximum

and minimum values in vector N [Aj]}
7: if δj=0 then
8: δj = R
9: end if

10: V = N [Aj] + δj {Extract Aj , increment all values in
Aj by δj}

11: N1 = N [1 : Aj−1].V.N [Aj+1 : An] {Generate new
matrix, keep previous columns and replace Aj by V
instead}

12: P0 = Query M0 to obtain new class labels for N1

13: w+
j = Average number of instances in P0 that have

switched classes
14: V = N [Aj] - δj {Decrement all values in column Aj

by δj}
15: N2 = N [1 : Aj−1].V.N [Aj+1 : An]
16: P0 = Query M0 to obtain new class labels for N2

17: w−j = Average number of instances in P0 that have
switched classes

18: wj = (w+
j + w−j)/2

19: Append wj to ScoresArray
20: end for
21: CRscore =

∑
(ScoresArray)

n
22: return CRscore

Fig. 2: The GetNuggetScore algorithm.

3.4 Computing the CRscore

Using the description in Section 3.2 on how the CRscore

is calculated, the algorithm GetNuggetScore is devel-
oped and is outlined as Fig. 2.

The computational complexity of the algorithm is de-
rived as follows. Deriving the model M0 is dependent on
the complexity of the chosen classification algorithm (C).
The complexity of the classification algorithm is denoted
as t(C). Each attribute Aj is analyzed by checking if
increasing or decreasing the values of the attributes by
an extent δj , switches the class label. Hence, for each
attribute, the model M0 is queried twice. There are d data
instances in N and thus for each attribute there are 2×d
queries. Since there are n attributes, the complexity of the
for-loop in Fig. 2 is O(dn). When d � n, the complexity
of the for-loop becomes ≈ O(n). The total complexity
of the algorithm is O(t(C) + dn) (≈ O(t(C) + n) when
d � n).

3.5 Choosing δj

In the algorithm GetNuggetScore, the parameter δj is
used. This parameter is a measure of how much the
attribute values should increase or decrease. For each
attribute Aj , an appropriate value of δj is calculated by
computing the range of values of Aj in neighborhood
N . This is to ensure that all the attribute values Aj

get a chance to help the data points in N to switch
class labels. Fig. 3 is used to analyze a closely related

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

issue. The data set in Fig. 3 has two attributes - let
us say attributes ‘X ’ and ‘Y ’ and two subsets of inter-
est denoted as area ‘A’ and area ‘B.’ Considering Fig.
3(a), increasing and decreasing the attribute values of
‘X ’ by δj results in a majority of area A to be inside
the opposite class. However, increasing and decreasing
attribute values along ‘Y ’, results in the switching of
class values only when increasing ‘Y ’ values. So, for this
example, only along 3 out of 4 directions (increasing
and decreasing of attributes), can there be a switch of
classes. In this case, in 3 directions, all points in the
neighborhood ended up shifting to the opposite class.
Hence, using the defined CRscore, the score for area A
would be 3/4 = 0.750. Performing a similar analysis
on area B, reveals (Fig. 3(b)), that in only 2 out of 4
directions (increasing attributes ‘X ’ and ‘Y ’) result in
switching of class labels for all points in the neighbor-
hood. Decreasing the attribute Y by δj results in only
a portion of the points moving to the opposite class,
ultimately, reducing the CRscore. Assuming that only
half the points in the neighborhood switch classes when
decreasing the attribute Y , one would have a CRscore of
(1+1+ 0.5)/4=0.625.

The above analysis reveals that two subsets (i.e., areas
A and B in Fig. 3), which in reality should be considered
of equal importance when the entire data set is consid-
ered may end up with different CRscore values. In other
words, although area A plays the same role as area B, the
two end up with considerably different CRscore values
(e.g., 0.750 and 0.625, respectively).

The cause of this phenomenon is the relative orien-
tation of the axes system and the two areas (subsets)
in general. This was indicated in the analytical steps
described earlier in deriving those two values. This can
be easily remedied as follows. We rotate one attribute
(say axis ‘X ’ in Fig. 3) with respect to another attribute
(axis ‘Y ’ in Fig. 3). We consider a sequence of rotations
by some angle θ until a complete rotation of 360◦ is
achieved. The summation of weights, w+

j and w−j (equa-
tion (1)) are recorded at each step. At the end of these
iterations, the maximum value of the sum of weights,
w+

j and w−j is returned and recorded in memory for each
attribute being considered. The final CRscore value for a
given subset is the average of all the previously recorded
w+

j and w−j values, after all the attributes have been
considered. When this approach is used on the example
depicted in Fig. 3, then both areas A and B are assigned
similar CRscore values (i.e., the value of 0.750).

The above remedied approach is incorporated
as a modification to the GetNuggetScore
algorithm. The modified algorithm is called the
GetNuggetScoreRevised algorithm. The algorithm’s
steps are provided in Fig. 4. The modified algorithm
includes a call to the RotationTest heuristic, outlined
as Fig. 5, which attempts to resolve the above discussed
problem of two similar areas receiving different or non-
representative scores. In the GetNuggetScoreRevised
algorithm one tests for non-representative results for
each attribute (lines 18-32). Recall from Fig. 3(b), that a

(a) An example to illustrate shifting of points in neighbor-
hood ‘Area A’.

(b) An example to illustrate shifting of points in neighbor-
hood ‘Area B’.

Fig. 3: Shifting of data instances.

non-representative result occurred during the following
scenario. When the points in the neighborhood were
shifted along one direction, the class labels switched for
all the points in the neighborhood. However, when the
points were shifted in the opposite direction, it resulted
in only a partial switching of class labels. A threshold
parameter is used to test what percentage of instances
in a neighborhood ended up switching class labels
when a certain attribute value is increased or decreased.
If all the instances end up switching class labels during
either increasing or decreasing an attribute’s values,
then the algorithm RotationTest need not be invoked
since the non-representative scores result only during
partial switching of class labels. If none of the instances
end up switching class labels along both directions,
there is no necessity to invoke the RotationTest either.
However, if all the instances end up switching class
labels along one direction and a partial switching of
labels occurs in the opposite direction, then one can use
the threshold parameter to decide whether to invoke

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Require: Tr: the training set, N : a neighborhood of data in-
stances and R: a distance parameter used in creating the
neighborhood set, N

1: M0 = Model resulting from training C using training set,
Tr

2: m = number of data instances in Tr

3: n = number of attributes in Tr

4: ScoresArray = φ
5: for each j in {1,2, ..., n} do
6: δj = max(N [Aj]) - min(N [Aj])
7: if δj=0 then
8: δj = R
9: end if

10: V = N [Aj] + δj {Extract Aj , increment all values in
Aj by δj}

11: N1 = N [1 : Aj−1].V.N [Aj+1 : An] {Generate new
matrix, keep previous columns and replace Aj by V
instead}

12: P0 = Query M0 to obtain new class labels for N1

13: w+
j = Average number of instances in P0 that have

switched classes
14: V = N [Aj] - δj {Decrement all values in column Aj

by δj}
15: N2 = N [1 : Aj−1].V.N [Aj+1 : An]
16: P0 = Query M0 to obtain new class labels for N2

17: w−j = Average number of instances in P0 that have
switched classes

18: threshold=1
19: if w+

j ≥ threshold then
20: up counter = True
21: else
22: up counter = False
23: end if
24: if w−j ≥ threshold then
25: down counter = True
26: else
27: down counter = False
28: end if
29: sum score = w+

j + w−j
30: if (up counter ⊕ down counter) = True then
31: sum score=RotationTest(M0,N ,Aj ,R)
32: end if
33: wj = (sum score)/2
34: Append wj to ScoresArray
35: end for
36: CRscore =

∑
(ScoresArray)

n
37: return CRscore

Fig. 4: The GetNuggetScoreRevised algorithm using the
RotationTest method.

the RotationTest or not.

If one wishes to minimize the number of calls to this
test, then the threshold parameter can be set as high
as 1, in order to short circuit the test and reduce the
computation time. However, if the need is to ensure that
all critical nuggets are mined out without any conflict,
then one can lower the threshold to a value between
0.5 and 1. Setting a threshold of less than 0.5 is not
necessary, as that would mean the attribute in question
is not switching labels when shifted in both directions. If
the condition in line 30 is satisfied (an XOR boolean oper-
ation is used), then the RotationTest is invoked. The key
idea in the RotationTest is summarized as follows: for
each attribute Aj , rotate the values corresponding to Aj

by an angle θ with respect to another attribute Ak (j �=k).

Require: M0: Model, N : a neighborhood of data instances, Aj :
an attribute and R: a distance parameter used in creating
the neighborhood set, N

1: Array = φ
2: for each θ in {10,20, ..., 360} do
3: TempArray = φ
4: δj = max(N [Aj]) - min(N [Aj])
5: if δj=0 then
6: δj = R
7: end if
8: for each k in {1,2, ..., m} and k != j do
9: δx = δj * cos((π/180) × θ)

10: δy = δj * sin((π/180) × θ)
11: Vj = N [Aj] + δx
12: Vk = N [Ak] + δy
13: if j < k then
14: N1 = N [1 : Aj−1].Vj .N [Aj+1 : Ak−1].Vk.N [Ak+1 :

An]
15: else
16: N1 = N [1 : Ak−1].Vk.N [Ak+1 : Aj−1].Vj .N [Aj+1 :

An]
17: end if
18: P0 = Query M0 to obtain new class labels for N1

19: w+
j = Average number of instances in P0 that have

switched classes
20: Vj = N [Aj] - δx
21: Vk = N [Ak] - δy
22: if j < k then
23: N2 = N [1 : Aj−1].Vj .N [Aj+1 : Ak−1].Vk.N [Ak+1 :

An]
24: else
25: N2 = N [1 : Ak−1].Vk.N [Ak+1 : Aj−1].Vj .N [Aj+1 :

An]
26: end if
27: P0 = Query M0 to obtain new class labels for N2

28: w−j = Average number of instances in P0 that have
switched classes

29: Append (w+
j +w−j) to TempArray

30: end for
31: Append max(TempArray) to Array {i.e., find the max

score among the k attributes}
32: end for
33: return max(Array)

Fig. 5: The RotationTest method.

For each of the different angles considered and the
different attributes Ak, the sum of weights, w+

j and w−j
is computed and recorded. After all the angles have been
considered, the maximum value among the recorded
sum of weights w+

j + w−j is chosen. If the RotationTest
is invoked for each and every attribute, then the com-
bined complexity of algorithms GetNuggetScoreRevised
and RotationTest will be O(n2) (since the number of
angles considered is a constant). However, during the
experiments with some real world data sets, the data in
some of the data sets was such that the complexity of
finding a CRscore for each neighborhood was far lower
than the worst-case theoretical complexity of O(n2). The
methodology for the RotationTest is outlined in Fig. 5.

3.6 Searching Near The Class Boundary
Using the methodology for finding the CRscore, our
goal is to find critical nuggets in Tr. The brute-force
method would be to exhaustively examine all possible

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

subsets, calculate their CRscore values and choose the
critical nuggets based on the ordering of the CRscore

values. However, for a large data set, this would be
computationally cumbersome due to the combinatorial
explosion of the problem. The question then becomes:
How can one computationally mine for such small-sized
critical nuggets in large data sets?

Since the brute-force method of investigating all pos-
sible combinations, would be computationally hard, one
can look at candidate sets that have a high likelihood
of being critical nuggets. A possible area that can be
investigated is near the class boundary that separates the
classes of the training set. The basis for this is that points
near the boundary are more susceptible to switching
of classes. When certain attribute values of boundary
points 2 are perturbed, the chances of a boundary point
switching to the opposite class are higher than a point
deep in the interior.

In order to validate the idea that boundary points have
higher potential of having high CRscore values, an exper-
iment was conducted. The 2-dimensional randomly gen-
erated synthetic data set depicted in Fig. 1(b) was used
for this experiment. Fig. 6 is the result of the experiment.
For each point of class ‘+’, the GetNuggetScoreRevised
algorithm was used to find a list of scores. The scores
were then plotted as a heat map with higher scores
being marked as darker grey dots and lower scores
being marked as lighter grey dots. The heat map is
represented in Fig. 6. It can be observed that there
are darker shades along the boundary as compared to
the interior. This indicates that the potential of finding
critical nuggets is higher along the boundary. Hence, one
can focus the search along the boundary as compared to
the interior. This would greatly reduce the search space
as well. Similar experiments were conducted with other
2-dimensional sets and similar conclusions were reached.

In order to find an approximate boundary set from
the training data, a boundary detection algorithm is pro-
posed. The algorithm is tested using the 2-dimensional
randomly generated synthetic data set depicted in Fig.
1(b). In [16], the authors proposed a boundary detection
algorithm to speed up classifications by Support Vec-
tor Machines (SVMs). Though our boundary detection
algorithm is similar in spirit to the one in [16], our
methodology is simpler as our goal in finding an ap-
proximate boundary is merely to reduce the search space
in finding the critical nuggets. The proposed algorithm
uses Euclidean distances to rank the distances between
points. The algorithm, FindBoundary, is outlined in Fig.
7. The algorithm works in two phases since this study
focusses on two-class classification problems. In each
phase, a boundary set is isolated for each class in the
data set. So for isolating the boundary points for the ‘+’
class, the algorithm works by calculating distances to all
points in T−r from each point in T+

r . For every point in
T+
r , 5 closest T−r points are chosen and the average of

2. From this point on, the use of the terms ‘boundary points’ and
‘points near the boundary’ refer to the data instances that lie on or are
very close to the class boundary separating the two classes

UC Scores
under 0.11
0.11 − 0.23
0.23 − 0.34
0.34 − 0.45
0.45 − 0.56
over 0.56

With R=0.45

Fig. 6: Boundary Points Having Higher UC Scores.

Require: T+
r and T−r : The training sets for classes ‘+’ and ‘-’

1: Initialize array S = φ
2: for each point i in T+

r do
3: Calculate distance to all points in T−r
4: Find the nearest 5 T−r points to i
5: Using the above top 5 distances, compute an average

to get a score Si

6: Store each Si score in list S
7: end for
8: Sort all the scores in the list S
9: Plot a graph of sorted scores in S.

10: Find cut-off index i where the slope of the graph starts
increasing drastically. {Points near the boundary will have
smaller scores and as one moves away from the boundary,
the scores start increasing drastically.}

11: Points corresponding to scores S1, S2, ..., Si in list S form
the boundary set B+.

12: return Boundary Set B+.
13: Repeat algorithm with T−r in the role of T+

r to get Bound-
ary Set B−.

Fig. 7: The FindBoundary algorithm.

the 5 distances is calculated (Si). The score Si, computed
for each of the T+

r points, is sorted and stored in a list S.
To find the boundary set, one needs a cut-off point that
would provide the required subset. Using a visualization
technique, a graph of the scores in S is plotted. The
points that lie closest to the class boundary will have
the smallest average distances. A cut-off point is chosen
where the slope of the graph increases sharply, indicating
a threshold, beyond which, includes interior points with
higher Si scores. This procedure is then carried out again
for isolating boundary points for the ‘-’ class.

Complexity of the FindBoundary algorithm

The complexity of the for-loop in the FindBoundary
algorithm is: O(|T+

r | × |T−r |) = O(m2). Sorting takes
O(mlogm). Thus the total complexity is O(m2) +
O(mlogm) = O(m2).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

Require: Tr: the training set and R: the distance parameter to
form the neighborhood set N

1: ScoresArray=φ
2: Split Tr into T+

r and T−r
3: B+ = FindBoundary(T+

r)
4: for each p0 in B+ do
5: N = {x | x ∈ B+ ∧ |x− po| ≤ R} {Finding same class

points, within a distance R from po}
6: CRscore=GetNuggetScoreRevised(Tr, N,R)
7: Append CRscore to ScoresArray
8: end for
9: Sort (descending) and rank scores in ScoresArray

10: Plot sorted scores in ScoresArray as a histogram and use
the histogram to find index k that separates the highest k
scores from the rest of the scores.

11: Use k to find top k Critical Nuggets for class ‘+’.
12: Re-initialize the ScoresArray and repeat steps 2-11 with B−

in the role of B+, to find critical nuggets for class ‘-’.

Fig. 8: The FindCriticalNuggets Algorithm.

3.7 The FindCriticalNuggets algorithm

The FindCriticalNuggets algorithm works in two
phases. In each phase it identifies critical nuggets for
each one of the two classes. Using the reduced boundary
set for each class, the data instances in the boundary
set are considered one at a time. Each data instance
in the boundary set is considered as a center for a
neighborhood. A neighborhood is formed by finding all
points that belong to the same class and lie within a
distance R from the center point. One class at a time
is considered since the goal is to find critical nuggets
that belong to one class but switch to the other class
when their attribute values are perturbed (a total of two
classes is assumed). If there are |B+| data instances in
the boundary set which belong to the same class (say
‘+’), one can form |B+| neighborhoods by considering
each instance in B+ as a center. For each of the |B+|
neighborhoods, the CRscore is computed. The scores are
then ranked and the higher scores are used to identify
the critical nuggets in T+

r . In the second phase, the other
class (say ‘-’) is considered. Hence |B−| neighborhoods
are then considered to compute the CRscore values
which in turn are sorted and ranked to identify critical
nuggets in T−r . The algorithm is outlined in Fig. 8.

In summary, the process of finding critical nuggets first
involves the identification of an approximate boundary
set, and next considering a neighborhood around each
boundary point and finding its CRscore. Identifying an
approximate boundary involves complexity of O(m2),
where m is the number of data instances in Tr. By
using the boundary set and the CRscore values different
neighborhoods are investigated. There are |B| neighbor-
hoods (|B| � m) and for each neighborhood the worst
complexity (including the rotation test) is O(dn2) where
d is the size of a typical neighborhood. This yields a total
complexity for the entire process of identifying critical
nuggets of O(m2 + t(C) + |B|dn2) which can be further
simplified to O(m2 + t(C) + n2) (since |B| � m and
d � n).

3.8 Choosing R

In the FindCriticalNuggets algorithm, the distance pa-
rameter R is introduced to define a typical neighbor-
hood. Choosing R is an important decision in identifying
critical nuggets. Choosing a too small R value may yield
single element critical nuggets (sets) while choosing a
too large value of R will yield large sized neighbor-
hoods that may not be sensitive to small changes in
their attribute values. Also choosing a large value of R
can increase the value of d, ultimately increasing the
complexity of the algorithm. So for the experimental
study, a range of R values are considered. The range
of R values for our experiments depended on the data
set. The general rule used during the study was to vary
R in the following range [0, x] - where x was a value
that caused the maximum size of the neighborhood to
not exceed 20% of the size of the data set. The main
intuition for setting this was to limit the size of the
neighborhoods, as large neighborhoods include points
that are located away from the class boundary and hence
are less sensitive to small changes in attribute values.
Larger neighborhoods also have lower CRscore values
and are not useful in the mining of critical nuggets.

To find the critical nuggets among neighborhoods
formed by different values of R, the following anal-
ysis was conducted. Using different values of R, the
FindCriticalNuggets algorithm was used to find the
CRscore values for each neighborhood (each neighbor-
hood was formed using every element in the boundary
set as a center). For each value of R, the top k neigh-
borhoods are identified based on their scores (The top k
subset of neighborhoods were identified by first sorting
the scores in descending order. Visualization methods
such as plotting the sorted scores as a histogram can
be used to identify an appropriate cut-off value of k.
k is chosen by selecting an appropriate point in the
histogram which delineates the small group of high
scores from the majority of small scores). Therefore, if
there are r values of R, one would have k× r neighbor-
hoods. Some of the k×r neighborhoods could have been
formed around the same center. Hence, among the k× r
neighborhoods, the scores are ranked based on unique
centers. The top k scores among the unique centers and
their associated R value are used to identify the top k
critical nuggets.

3.9 Duality
In the FindCriticalNuggets algorithm, recall that the
search for critical nuggets was on a class-by-class basis
on two-class problems. Hence, for each class label, one
obtains a set of critical nuggets. Since critical nuggets
were identified for each of the class labels, a study was
conducted to see if there were any relationships between
the two sets of critical nuggets. A property that was
investigated was duality - relationships between critical
nuggets of the two classes. In Fig. 9, some critical nuggets
for two classes are illustrated using darker shades of
grey. The experiments mainly checked to see if the
following scenarios occurred:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

−

−
−

−
−

−

−

−

−

−

−

−

−

−−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

− −

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−
−

−
−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−

−

−

−
−

−−
−

−

−

−

−

−

−

−−

−

−

−

−

−

−

−
−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + +

+ +
+

+

+

+

++

+

+
+

+

+

− −−
−

−
−−

−
−−

+ ++
+

+ +++
+

+

+++
+ +
++ ++

+

−−−
−−
−−−
−−

Class Boundary

Class ’+’

Class ’−’

Critical Nuggets
 For Class ’−’
 (Scenario 2)

Non−Critical Areas For Class ’+’
 (Scenario 2)

Critical Nuggets On
 Either Side of

 Class Boundary
 (Scenario 1)

Critical Nuggets
 For Class ’+’
 (Scenario 2)

Non−Critical Areas For Class ’−’
 (Scenario 2)

Fig. 9: Illustration For Duality.

1) Scenario 1 - Do critical nuggets belonging to different
classes lie in ‘proximity’ to one another? In other
words, a check was done to see if the critical nuggets
of different class labels lie in ‘proximity’ but on
opposite sides of the class boundary (see Fig. 9 for
Scenario 1).

2) Scenario 2 - Are there any sets (neighborhoods) that
are non-critical for one class label, but lie in ‘prox-
imity’ to a critical nugget belonging to another class
and vice versa (see also Fig. 9 for Scenario 2)?

Both scenarios have good potential as they help in
broadly dividing the data set into three regions. These re-
gions are summarized as follows (assuming two classes
‘+’ and ‘-’):
1) Region 1 - This is comprised of critical nuggets of one

class that lie in close proximity to critical nuggets of
the opposite class (i.e., subsets of the data set that
have high CRscore values and lie in close proximity,
but on opposite sides of the class boundary) and vice
versa. This is depicted as Scenario 1 in Fig. 9.

2) Region 2 - Critical nuggets of one class that lie in
close proximity to neighborhoods of the opposite
class, neighborhoods that are not critical nuggets
(and vice versa). This is depicted as Scenario 2 in
Fig. 9.

3) Region 3 - Neighborhoods (or subsets of the training
data) that lie in the interior (not near the class
boundary) of either class (characterized by very low
CRscore values).

The empirical results for this study indicate that if
there are a group of nuggets from one class in close
proximity with each other, then it is likely to have a
corresponding group of nuggets for the other class on
the other side of the boundary. In other words, a group
of nuggets for one class indicates a region of the data set
of potential high interest for both classes. Decomposing
a data set into the three regions described as above, has
the potential to offer useful insights of the data. Such
insights may assist the analyst to better understand the
phenomenon or systems related to the data. Clearly, this

is domain dependent.

3.10 Improving Classification Accuracy
Classification algorithms are usually judged based on the
accuracy of their predictions. If the predictions include a
minimum number of false positives and false negatives,
the accuracy of an algorithm is rated as high. During
the experimental stage with various data sets, tests were
conducted to see if critical nuggets could help improve
the classification accuracy. The identified nuggets were
used in deriving additional small scale classification
models. For each class, an additional classification model
is built/trained by first deriving a new data set which is
a subset of the original training data set. The new data
set was derived by relabeling a subset of the original
data records into two new classes as follows:
• Data records that belong to the top k (for finding k,

see lines 9-11 in Fig. 8) critical nuggets (of say, the
‘+’ class) become a part of one class.

• Data records that are near the top k ‘+’ class critical
nuggets but NOT belonging to the set of ‘+’ class
critical nuggets are labelled as another class (this
may include instances that belong to both ‘+’ and
‘-’ classes).

An additional model is built similarly using the critical
nuggets from the other class (say, ‘-’). This is illustrated
in Fig. 10. In this figure, the right region indicates
critical nuggets belonging to the ‘+’ class (labeled as
dark shaded ‘+’ symbols) and surrounded by some
neighboring points belonging to both ‘+’ and ‘-’ classes.
The region on the top left illustrates critical nuggets
belonging to the ‘-’ class (labeled as dark shaded ‘-’
symbols) and surrounded by both ‘+’ and ‘-’ neighbors.
Using this newly derived data set, a classification model
was setup. Since very few subsets qualify as critical
nuggets, the newly re-labelled data set has a skewed
distribution of classes. There are very few data instances
that belong to the first class of critical nuggets. At the
same time, there is a disproportionately large number of
non-critical neighbors. This skewed distribution can be
remedied using a cost sensitive classifier [17]. One can
model a cost sensitive learner that assigns higher costs
for misclassifying the class that is less represented when
compared to misclassifying objects of the more repre-
sented class. In our case, it is more important to identify
a critical nugget correctly. So the cost classification model
is derived by assigning a higher cost for not identifying
a critical nugget correctly. Using the newly trained clas-
sification models built around critical nuggets, one can
use it in tandem with the original classification model to
predict the class labels of data records. According to the
experiments described next, it turns out that this method
of post-processing of classified data records using the
information gained from the critical nuggets helps in
improving the classification accuracy in data sets. In
summary, the steps in improving classification accuracy
are outlined as follows:
1) Using a standard classification algorithm C, derive a

classification model M0.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

−

−
−
− −
−

+
+ ++

+
+

+
+

−

−

−−

−−

−
−

−−

−− −

+
++ +

+

+

+
+

+

++
+

+

++

+++
+ +
++ ++

+

−−−
−−
−−−
−−

Class Boundary

Classification Models Built Around
 Critical Nuggets

 To Improve Classification Accuracy

Fig. 10: Post-processing using Critical Nuggets For Im-
proving Accuracy.

2) For the first class (such as the ‘+’ class in Fig. 10),
build a data set comprising of two new classes:
• One class is comprised of only the top k critical

nuggets (e.g., dark shaded ‘+’ points within the
right circle in Fig. 10). Label this class as ‘I’.

• The other class is comprised of non-critical records
and it is derived by using the following principle:
for each member in the set of critical nuggets
(class ‘I’ in the previous step), choose the closest
neighbors that are not part of class ‘I’ (e.g., points
just outside the right circle in Fig. 10). Label these
data instances as class ‘O’.

3) Using a nearest neighbor classifier, build a cost-
sensitive classification model, assigning higher costs
for misclassifying a record belonging to critical
nuggets. The derived classification model is denoted
as M+

nuggets.
4) Repeat steps 2-3 for the second class (such as the ‘-’

class in Fig. 10) and the derived model is denoted as
M−

nuggets.

For a given test data instance or a new unlabeled data
instance, the derived critical nuggets models (M+

nuggets

and M−

nuggets) are used along with the standard classi-
fication model M0. We assign a class label guided by
testing against the following set of rules:

• If M+
nuggets assigns a class label of ‘I’ and M−

nuggets

assigns a class label of ‘O’, then the data instance is
assigned a label of ‘+’.

• If M−

nuggets assigns a class label of ‘I’ and M+
nuggets

assigns a class label of ‘O’, then the data instance is
assigned a label of ‘-’.

• If M+
nuggets and M+

nuggets assign a class label of ‘O’,
then the data instance is assigned a class label based
on the class assigned by model M0 obtained from
the standard classification algorithm.

• If M+
nuggets and M−

nuggets assign a class label of ‘I’,
then the data instance is assigned a class label based
on the class assigned by M0.

4 AN EXPERIMENTAL STUDY

Some experiments were conducted on eleven multi-
dimensional real world data sets from the UCI machine
learning repository [18] and two 2-dimensional geo-
graphical synthetic data sets. The software was written
in R [19] and Python [20] and utilized the data mining
library Weka [21]. The algorithm FindCriticalNuggets
was applied to each of the data sets. The next two
subsections provide detailed summaries of the experi-
mental analysis on one of the 2-dimensional synthetic
data sets and one of the real world data sets. These
summaries include details such as some results of the
FindCriticalNuggets algorithm, validation of properties
such as duality, and the improvements in classification
accuracy using critical nuggets. A similar analysis has
been conducted for ten other real world data sets, but for
the sake of space, detailed explanations have been pro-
vided only for one of the real world data sets. However,
the classification accuracy improvements for all eleven
real world data sets and two 2-dimensional synthetic
data sets have been provided in the last subsection.

All the data sets used in the experiments were nor-
malized (values for each attribute in a data set lie
within [0, 1]) using normalization routines available in
the Weka library. Euclidean distance measures were
used in computing distances. For all the data sets,
data instances were normalized and ten runs of 10-
fold cross validations were performed. The following
classification algorithms from Weka were used for this
study: J48 (Weka’s software implementation of the C4.5
[22] algorithm), IBk (Weka’s implementation of K-nearest
neighbor classifier [23], LMT (Weka’s implementation of
Logistic Model Trees [24]) and NaiveBayes [25]. Default
options in Weka were used for the algorithms J48, LMT
and NaiveBayes and for the IBk algorithm, the nearest-
neighbor parameter of K was set to 5. Table 1 provides a
description of the data sets used during the experimental
study.

For the experiments, decisions had to be made with
regard to the choice of a cost-sensitive classifier to
handle the skewed data distribution (when building
small classification models around critical nuggets) and
the assignment of costs for the cost-sensitive classi-
fier. For the improvement of accuracies using critical
nuggets, two cost-sensitive algorithms (CostSensitive-
Classifier [26] and MetaCost [17]) from Weka were con-
sidered to tackle the imbalanced data distribution. The
algorithms, MetaCost and CostSensitiveClassifier, use a
base classifier to instantiate the training process (the base
classifier can be any standard classification algorithm).
For the base classifier in MetaCost, the four classification
methods used in the study (J48, LMT, IBk and Naive-
Bayes) were tested against the various data sets to see
which classification method yielded the best accuracy.
IBk, as a base classifier, consistently performed better
than the others since the small models created around
the critical nuggets were suited for neighborhood-based
classification techniques. Hence IBk was chosen as the
base classifier for MetaCost. MetaCost in combination

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

TABLE 1: Description Of Data Sets Used.

Data Set

Number
of

Instances

Number
of

Attributes
Class

(Distribution)

Synthetic Geographical
(Georgia, USA) 10,387 2

+ (2,649),
- (7,738)

Synthetic Geographical
(Idaho, USA) 10,233 2

+ (2,963),
- (7,270)

Wisconsin Breast
Cancer (WDBC)

569 30
Benign (357),

Malignant (212)

SPECT Heart 267 42
Normal (212),
Abnormal (55)

Spambase 4,601 57
Spam(1,813),

Not Spam(2,788)
German Credit Data 1,000 24 Good(700),

Bad(300)
Pima Indian

Diabetes 768 8
Positive(268),
Negative(500)

Sonar 208 60 R(97),
S(111)

Ionosphere 351 34 good(225),
bad(126)

Cardiotocography2 a 1,950 22
Normal(1655),
Suspect(295)

Liver Disorders 345 6 A(145),
B(200)

Parkinsons 195 22 H(48),P(147)
Glass2 b 163 9 Y(87), N(76)

a. A variant of the Cardiotocography Data Set of UCI Reposi-
tory, formed by considering data records belonging to only 2 out
of 3 class attributes and ignoring the third class attribute called
‘Pathologic’.

b. A variant of the Glass Identification Data Set of UCI Repos-
itory, formed by combining data records belonging to class at-
tributes 1 and 3 and renaming the class attribute as class ‘Y’,
combining records having class attributes 2 and 4 and renaming
as class ‘N’ and excluding records belonging to class attributes 5,
6 and 7. This variant has been used in prior work such as [24].

with IBk consistently yielded better accuracies for dif-
ferent data sets when compared to the CostSensitive-
Classifier method. So MetaCost in combination with
IBk was chosen as the cost-sensitive classifier for the
experiments. Cost ratios for cost-sensitive classifiers are
ideally provided by domain experts. However, in this
case, three different cost ratios 2:1, 5:1 and 10:1 were
initially considered. The ratio of 5:1 (a cost of 5 was
allocated towards misclassification of a critical data in-
stance as compared to a cost of 1 allocated towards
misclassification of a non-critical data instance) provided
higher improvements in accuracy as compared to the
ratio of 2:1. Increasing it to 10:1 did not provide any
significant improvement when compared to accuracy im-
provements with the 5:1 ratio. The main goal among all
the data sets was to correctly classify records that belong
to critical nuggets. By assigning a higher cost (5) as a
penalty for misclassification of a critical data instance
(as compared to equal cost penalties) was sufficient to
meet the goal of improving classification accuracies for
different data sets. Hence 5:1 was used as a cost ratio for
the study.

4.1 Analyzing the Synthetic Geographical Data Set
This training data set is a synthetic data set that conforms
to the political boundary of the State of Georgia, USA.
This is a large data set that contains 10,387 observations
comprising of 2 classes: ‘+’ (2,649 instances) and ‘-’
(7,738 instances). In other words, points inside the State
of Georgia are defined as ‘+’ points, while the ones
outside the political boundary are defined as ‘-’ points. A
boundary set was approximated to 500 instances of class
‘+’ and 500 instances of class ‘-’. This 2-dimensional data
set has an advantage as it provides visual validation to
the results. Fig. 11(a) provides an approximation of the
boundary set for the state of Georgia. Fig. 11(b) depicts
the results of the FindCriticalNuggets algorithm on the
data set. Fig. 11(b) is similar to Fig. 11(a), except that
some of the critical nuggets for both classes have been
superimposed. Notice that in Fig. 11(b) the black dots
indicate ‘+’ data instances that have been identified as
critical nuggets and having high CRscore values. Also
notice that these black dots line up along areas that have
visually interesting features such as sharp bends and
curves. Similarly, the dark grey dots indicate ‘-’ data
instances that have been identified as critical nuggets
having high CRscore values.

Duality in this data set can be explained through
the visual features. Areas 1, 2, 3 and 4 in Fig. 11(b)
are visually interesting features. One can observe that
critical nuggets for both classes have lined up near these
visually interesting features. Also observe that critical
nuggets for one class (black dots) tend to line up near
the critical nuggets of the other class (dark grey dots).
This finding is in line with the Scenario 1 illustration
depicted in Fig. 9 and discussed in the earlier section on
duality.

Histograms of CRscore values for two different R
values for each of the two classes are depicted as Fig. 12.
Among the 500 different neighborhoods investigated, it
can be observed that there are indeed very few sets with
high CRscore values, say greater than 0.75. This indicates
the potential value of finding the critical nuggets in large
data sets.

Classification accuracy improvements for this data
set are outlined in rows 1-4 of Table 2 (to be described
later in more detail). One can observe that the relative
improvement in accuracy when using J48 as a classifier
is 11.46%.

4.2 Analyzing the Wisconsin Breast Cancer (WDBC)
Data Set

This data set has 569 data instances (357 Benign and
212 Malignant), 32 attributes (30 attributes when the
record locator and class labels are skipped) and two
types of class labels (Benign and Malignant). Using
the FindBoundary algorithm, an approximate bound-
ary set comprising of 150 Benign and 150 Malignant
data instances was selected. The main task was to
apply the FindCriticalNuggets algorithm to identify
critical nuggets. The standard normalization function

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

(a) Boundary Approximation: Black dots indicate
‘+’ points and grey dots indicate ‘-’ points.

(b) Critical Nuggets: Black dots indicate ‘+’ points
that are critical nuggets. Dark grey dots indicate
‘-’ points that are critical nuggets. Light grey dots
indicate ‘+’ and ‘-’ points that did NOT emerge as
critical nuggets.

Fig. 11: Analyzing the Synthetic Geographical Data Set.

available in the Weka library was used to normal-
ize this data set. For different values of R and for a
given class, the FindCriticalNuggets algorithm was run.
For this analysis, five different R values were used:
{0.20, 0.25, 0.30, 0.35, 0.40}. Increasing the range of R
values beyond 0.40 increased the maximum size of the
neighborhood to exceed 20% of the size of the data set
(see Section 3.8). The neighborhoods that had the top 20
scores were identified for each value of R, as the top 20
high scores clearly separated the rest of the low scores
(see Fig. 13). Among the 100 (= 20× 5) neighborhoods,
the top 20 neighborhoods (each formed around unique
centers) were selected based on their scores and these
neighborhoods formed the critical nuggets. The above
steps of finding the top 20 critical nuggets was done for
the other class as well.

Histograms of the CRscore values for two different
values of R are outlined as Fig. 13. The histograms reveal
that only a very small number of neighborhoods qualify
as critical nuggets among the 150 different neighbor-

With R=0.015

Top 500 Neighborhoods (class +)

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With R=0.02

Top 500 Neighborhoods (class +)

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With R=0.015

Top 500 Neighborhoods (class −)

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With R=0.02

Top 500 Neighborhoods (class −)

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 12: The Geographical Data set - Histograms of sorted
scores for two different R values.

hoods surveyed for each value of R. This underscores
the potential importance of finding such sets.

The duality properties of critical nuggets were verified
for this dataset. It was found that critical nuggets belong-
ing to one class tend to be close to critical nuggets be-
longing to the opposite class (since one cannot visualize
this data set, Euclidean distances were used to estimate
how close records were to each other). This finding was
in line with Scenario 1 depicted in Fig 9.

Results on improving classification accuracy for this
data set are outlined in rows 5-8 of Table 2. Though
the increase in accuracy may seem marginal (3.83%), the
relative improvement in accuracy was high (66.26%).

Above all, the methodology for finding critical nuggets
has isolated benign records, whose attribute values when
slightly perturbed, end up switching to the malignant
class. This is valuable information as it can help identify
small sets of benign records that are susceptible to easily
switching over to the malignant class.

4.3 Summary of Classification Accuracy Improve-
ments
In Table 2, a summary of the classification accuracy
improvements are provided. Eleven real world data sets
from the UCI Repository [18] and two synthetic data
sets were used. The column labelled as a0 provides the
accuracy of the chosen classification algorithm on a given
data set, without the knowledge of critical nuggets. The
next column labelled as a1 indicates the improvements in
accuracy of classification results as a result of knowledge
gained through identification of critical nuggets.

In order to understand the values in the last column of
Table 2 (labelled ”Relative Improvement”), consider any

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

With R=0.3

Top 150 Benign Neighborhoods

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With R=0.35

Top 150 Benign Neighborhoods

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With R=0.35

Top 150 Malignant Neighborhoods

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With R=0.4

Top 150 Malignant Neighborhoods

S
or

te
d

U
C

 S
co

re
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 13: The WDBC Data set - Histograms of sorted scores
for two different R values.

row of the table. Suppose we consider the results for
the SPECT Heart data set using J48 as the classification
method. Without the use of the nuggets that accuracy
was equal to 73.22%. With the use of critical nuggets the
accuracy increased to 93.93%. The increase in accuracy
is equal to 20.71% = (93.93% − 73.22%). However,
the maximum possible improvement would be equal to
100 − 73.22 = 26.78%. The previous increase of 20.71%
represents 77.33%(= 20.71

26.78
) of the maximum possible

improvement. The rest of the results in that column in
Table 2 have been computed in a similar manner. The
exceptionally high values in the last column of Table 2
indicate the high potential critical nuggets may offer in
improving classification accuracy.

Using the results of Table 2, the Wilcoxon [27] test
was used to test the statistical significance of accuracy
improvements using critical nuggets as compared to
using a standard classification algorithm (without the
knowledge of critical nuggets). These results are sum-
marized in Table 3. Notice that at 99% confidence level,
the accuracy improvements using critical nuggets are
statistically significant (p-values being less than 0.01)
when compared to results obtained by using only the
standard classification algorithms (J48, LMT, NaiveBayes
and IBk).

5 CONCLUSIONS AND FUTURE RESEARCH
This paper presents the notion of critical nuggets. A new
metric, the CRscore, was introduced for measuring crit-
icality of a subset or nugget. A simple rotation test was
proposed to resolve conflicting scores when they occur.
The proposed score was used to identify critical nuggets.
The tests on a number of 2-dimensional synthetic data

TABLE 2: Improvements in Accuracy Using Critical
Nuggets.
Data set Classifier

a0

(Accuracy
before
Critical

Nuggets)
(%)

a1

(Accuracy
With

Critical
Nuggets)

(%)

Accuracy
Increase

(a1 − a0)
(%)

Relative
Improve-

ment
(a1−a0

100−a0
)

(%)

Synthetic
Geographical

(Georgia, USA)

J48 98.43 98.61 0.18 11.46
LMT 99.49 99.91 0.42 10.19
NaiveBayes 82.78 83.73 0.95 5.52
IBk 98.29 98.51 0.22 12.87

Synthetic
Geographical
(Idaho, USA)

J48 98.83 98.93 0.10 8.55
LMT 98.99 99.10 0.11 10.89
NaiveBayes 80.02 81.33 1.31 6.56
IBk 98.14 98.32 0.18 9.68

Wisconsin
Breast Cancer

(WDBC)

J48 94.22 98.05 3.83 66.26
LMT 97.47 99.12 1.65 65.22
NaiveBayes 93.34 96.00 2.66 39.94
IBk 95.36 97.68 2.32 50.00

SPECT
Heart

J48 73.22 93.93 20.71 77.33
LMT 79.03 93.67 14.64 69.81
NaiveBayes 68.13 89.36 21.23 66.61
IBk 69.89 89.06 19.17 63.67

Spambase

J48 92.67 96.28 3.61 49.25
LMT 93.33 96.60 3.27 49.03
NaiveBayes 79.62 89.38 9.76 47.89
IBk 90.85 95.41 4.56 49.84

German Credit

J48 73.13 79.76 6.63 24.67
LMT 76.96 81.26 4.30 18.66
NaiveBayes 75.42 82.50 7.08 28.80
IBk 67.19 73.18 6.00 18.26

Pima
Indian

Diabetes

J48 75.00 84.69 9.70 38.78
LMT 76.80 87.29 10.49 45.22
NaiveBayes 75.74 86.44 10.70 44.11
IBk 70.22 84.09 13.87 46.57

Sonar

J48 73.61 89.71 16.10 61.00
LMT 77.07 90.05 12.98 56.61
NaiveBayes 67.74 89.38 21.64 67.08
IBk 86.44 95.43 8.99 66.30

Ionosphere

J48 89.68 98.40 8.72 84.50
LMT 91.96 98.03 6.07 75.50
NaiveBayes 82.65 94.73 12.08 69.63
IBk 86.63 91.62 4.99 37.32

Cardiotoco-
graphy2

J48 93.73 94.50 0.77 12.28
LMT 94.66 95.61 0.95 17.79
NaiveBayes 86.39 89.43 3.04 22.34
IBk 92.72 93.68 0.96 13.19

Liver
Disorders

J48 65.68 85.19 19.51 56.85
LMT 69.71 85.22 15.51 51.20
NaiveBayes 55.94 77.36 21.42 48.62
IBk 63.01 82.14 19.13 51.72

Parkinsons

J48 83.79 95.90 12.11 74.71
LMT 84.56 97.08 12.52 81.09
NaiveBayes 69.38 94.36 24.98 81.58
IBk 95.79 98.67 2.88 68.41

Glass2

J48 79.14 96.32 17.18 82.36
LMT 77.48 96.07 18.59 82.55
NaiveBayes 61.96 94.36 32.40 85.17
IBk 77.42 96.75 19.33 85.61

sets provided a visual validation that such nuggets are
more likely to lie near class boundaries and in close
proximity to the complex features along the class bound-
aries. Reducing the search to near the class boundaries
saves computation time in identifying such nuggets. The
FindCriticalNuggets algorithm was outlined that used
the boundary estimation method and the CRscore to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

TABLE 3: Significance of Improvements

Comparison
Positive
Ranks

Negative
Ranks p-value

J48 vs.
J48+Critical Nuggets 0 91 < 0.01

LMT vs. LMT+Critical Nuggets 0 91 < 0.01

NaiveBayes vs. Naive-
Bayes+Critical Nuggets

0 91 < 0.01

IBk vs. IBk+Critical Nuggets 0 91 < 0.01

identify critical nuggets. Some important properties such
as the dual nature of critical nuggets were discussed
and the properties were validated through some sets of
experiments. The proposed ideas were tested on some
multi-dimensional real world data sets. Results from the
experiments on the real world data sets revealed that
only a very small number of subsets qualified as critical
nuggets. Experimental results from the real world data
sets also indicated the importance of finding such sub-
sets in large databases. The knowledge of critical nuggets
also helped to reduce the number of false positives
and false negatives and thus significantly improving
the overall accuracy of classification tasks. Future work
can be done on improving the O(n2) complexity of the
boundary approximation algorithm. Work can also be
done in extending these ideas to data sets with multiple
classes (greater than 2) and data sets with mixed at-
tributes. The post-processing methodology of improving
classification accuracy proposed in this work can also be
compared with other techniques (including resampling
techniques and other cost-sensitive classification meth-
ods) in the field of classification algorithms.

REFERENCES

[1] A. Koufakou and M. Georgiopoulos, “A fast outlier detection
strategy for distributed high-dimensional data sets with mixed
attributes,” Data Mining and Knowledge Discovery, vol. 20, no. 2,
Sp. Iss. SI, pp. 259–289, MAR 2010.

[2] R. A. Weekley, R. K. Goodrich, and L. B. Cornman, “An Algorithm
for Classification and Outlier Detection of Time-Series Data,”
Journal Of Atmospheric AND Oceanic Technology, vol. 27, no. 1, pp.
94–107, JAN 2010.

[3] M. Ye, X. Li, and M. E. Orlowska, “Projected outlier detection in
high-dimensional mixed-attributes data set,” Expert Systems With
Applications, vol. 36, no. 3, Part 2, pp. 7104–7113, APR 2009.

[4] K. McGarry, “A survey of interestingness measures for knowledge
discovery,” Knowledge Eng. Review, vol. 20, no. 1, pp. 39–61, 2005.

[5] L. Geng and H. J. Hamilton, “Interestingness measures for data
mining: A survey,” ACM Comput. Surv., vol. 38, September 2006.
[Online]. Available: http://doi.acm.org/10.1145/1132960.1132963

[6] E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-
Based Methods. Springer, 2010.

[7] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers:
Algorithms and applications,” VLDB J., vol. 8, no. 3-4, pp. 237–
253, 2000.

[8] D. Hawkins, Identification of Outliers (Monographs on Statistics
and Applied Probability). Springer, 1980. [Online]. Available:
http://www.worldcat.org/isbn/041221900X

[9] F. Angiulli and C. Pizzuti, “Outlier mining in large high-
dimensional data sets,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 2,
pp. 203–215, 2005.

[10] Y. Tao, X. Xiao, and S. Zhou, “Mining distance-based outliers from
large databases in any metric space,” in KDD, T. Eliassi-Rad, L. H.
Ungar, M. Craven, and D. Gunopulos, Eds. ACM, 2006, pp. 394–
403.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, 2009.

[12] S. D. Bay and M. Schwabacher, “Mining distance-based outliers in
near linear time with randomization and a simple pruning rule,”
in KDD, L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos,
Eds. ACM, 2003, pp. 29–38.

[13] A. Ghoting, S. Parthasarathy, and M. E. Otey, “Fast mining of
distance-based outliers in high-dimensional datasets,” Data Min.
Knowl. Discov., vol. 16, no. 3, pp. 349–364, 2008.

[14] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,” SIGMOD Rec., vol. 29,
no. 2, pp. 93–104, 2000.

[15] L. Duan, L. Xu, Y. Liu, and J. Lee, “Cluster-based
outlier detection,” Annals of Operations Research, vol. 168,
no. 1, pp. 151–168, April 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10479-008-0371-9

[16] N. Panda, E. Y. Chang, and G. Wu, “Concept boundary detection
for speeding up svms,” in ICML, ser. ACM International Confer-
ence Proceeding Series, W. W. Cohen and A. Moore, Eds., vol.
148. ACM, 2006, pp. 681–688.

[17] P. Domingos, “Metacost: A general method for making classifiers
cost-sensitive,” in In Proceedings of the Fifth International Conference
on Knowledge Discovery and Data Mining. ACM Press, 1999, pp.
155–164.

[18] A. Frank and A. Asuncion, “UCI machine learning repository,”
2010. [Online]. Available: http://archive.ics.uci.edu/ml

[19] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2010, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[20] G. van Rossum et al., Python:An object oriented programming
language, 1991. [Online]. Available: http://www.python.org

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,”
SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009. [Online].
Available: http://doi.acm.org/10.1145/1656274.1656278

[22] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[23] D. Aha and D. Kibler, “Instance-based learning algorithms,”
Machine Learning, vol. 6, pp. 37–66, 1991.

[24] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,”
Machine Learning, vol. 95, no. 1-2, pp. 161–205, 2005.

[25] G. H. John and P. Langley, “Estimating continuous distributions
in bayesian classifiers,” in Eleventh Conference on Uncertainty in
Artificial Intelligence. San Mateo: Morgan Kaufmann, 1995, pp.
338–345.

[26] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning
by cost-proportionate example weighting,” in ICDM. IEEE
Computer Society, 2003, pp. 435–.

[27] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945. [Online].
Available: http://dx.doi.org/10.2307/3001968

David Sathiaraj has two M.S. degrees in In-
dustrial Engineering and Computer (Systems)
Science from Louisiana State University. He is
currently a candidate for the PhD degree in
Computer Science at Louisiana State University.
He has also been involved in software systems
development in his role as the IT Manager for
the NOAA Southern Regional Climate Center.
He has been an active developer of the Applied
Climate Information Systems (ACIS) project - a
distributed computing system that collects, ana-

lyzes and delivers climate data products. His research interests include
data mining, spatiotemporal analysis and visualization, distributed com-
puting and geographic information systems.

Dr. Evangelos Triantaphyllou did all his grad-
uate studies at Penn State University from 1984
to 1990. While at Penn State, he earned a Dual
M.S. in Environment and Operations Research,
an M.S. in Computer Science, and a Dual Ph.D.
in Industrial Engineering and Operations Re-
search. Currently he is a Professor in the Com-
puter Science Department at Louisiana State
University. His research focuses on decision-
making theory and applications, data mining and
knowledge discovery, and the interface of oper-

ations research and computer science.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

