
Minimizing the Average Query
Complexity of Learning Monotone

Boolean Functions

Vetle I. Torvik • Evangelos Triantaphyllou
Department of Psychiatry (MC 912) University of Illinois,
1601 West Taylor Street, Chicago, Illinois 60612-4321 USA

Department of Industrial and Manufacturing Systems Engineering,
Louisiana State University, Baton Rouge, Louisiana 70803-6409, USA

vtorvik@uic.edu • trianta@lsu.edu

This paper addresses the problem of completely reconstructing deterministic monotone
Boolean functions via membership queries. The minimum average query complexity is

guaranteed via recursion, where partially ordered sets (posets) make up the overlapping
subproblems. For problems with up to 4 variables, the posets’ optimality conditions are
summarized in the form of an evaluative criterion. The evaluative criterion extends the
computational feasibility to problems involving up to about 20 variables. A framework for
unbiased average case comparison of monotone Boolean function inference algorithms is
developed using unequal probability sampling. The unbiased empirical results show that
an implementation of the subroutine considered as a standard in the literature performs
almost twice as many queries as the evaluative criterion on the average. It should also be
noted that the first algorithm ever designed for this problem performed consistently within
two percentage points of the evaluative criterion. As such, it prevails, by far, as the most
efficient of the many preexisting algorithms.
(Artificial Intelligence; Programming: Integer: Algorithms: Branch and Bound; Networks-Graphs:
Matchings; Statistics: Sampling)

1. Introduction
Situations where a set of binary variables have a
non-negative (i.e., monotone) relationship with a
phenomenon are inherently frequent in applications.
Suppose a computer tends to crash when it runs a
particular word processor and web browser simul-
taneously. Then, the computer will probably crash
if it, in addition, runs other software applications.
Further, suppose this computer does not tend to
crash when it runs a particular CD player and web
browser simultaneously. Then, it will probably not
crash when it only runs the web browser (or the CD
player).

Recent literature contains a plethora phenomena
that can be modeled by using monotone Boolean func-
tions. Such diverse phenomena include, but are not
limited to, social worker’s decisions, lecturer evalua-
tionandemployeeselection (Ben-David1992), chemical
carcinogenicity, tax auditing, and real estate valuation
(Boros et al. 1994), breast cancerdiagnosis andengineer-
ing reliability (Kovalerchuk et al. 1996), signal process-
ing (Shmulevich 1997), rheumatology (Bloch and Sil-
verman 1997), voting rules in the social sciences (Jud-
son 1999), financial systems (Kovalerchuk and Vityaev
2000b), and record linkage in databases (Fellegi and
Sunter 1969,Winkler 1995, and Judson 2001).

INFORMS Journal on Computing © 2002 INFORMS
Vol. 14, No. 2, Spring 2002 pp. 144–174

0899-1499/02/1402/0144$5.00
1526-5528 electronic ISSN

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

In practice, a great deal of time and effort is put into
learning and understanding these monotone relation-
ships. Software applications are tested, diseases are
researched, database search engines are trained to be
intelligent, and so on. Due to the underlying mono-
tonicity, asking questions can be much more efficient
than observing cases as they present themselves.
Monotone Boolean functions lay the ground for

a simple question-asking strategy, which forms the
basis of this paper. More specifically, monotone
Boolean functions are reconstructed by successive and
systematic function evaluations (membership queries
submitted to an oracle). The oracle can be thought
of as an entity that knows the underlying monotone
Boolean function and provides a Boolean value in
response to each query. In practice, it may take the
shape as a human expert, or as the outcome of a task,
such as running an experiment or searching a large
database. Initially, the entire set of 2n Boolean vectors,
denoted by �0�1�n, is considered unclassified. A vec-
tor is then selected from the set of unclassified vectors
and is submitted to the oracle as a membership query.
After the vector’s function value is provided by the
oracle, the set of unclassified vectors is reduced. These
queries are then repeated until all of the vectors are
classified.
Given the classification of any vector in �0�1�n,

other vectors may be concurrently classified if the
underlying function is assumed to be monotone.
Therefore, only a subset of the 2n vectors need to
be evaluated in order to completely reconstruct the
underlying function. Thus, a key problem is to select
“promising” vectors so as to reduce the total number
of queries (or query complexity). Earlier work on mono-
tone Boolean function inference focuses on reducing
the query complexity (Hansel 1966, Sokolov 1982, and
Gainanov 1984). More recent work includes the com-
putational complexity (Fredman and Khachiyan 1996,
Boros et al. 1997, and Makino and Ibaraki 1997).
The problem of inferring monotone Boolean func-

tions via membership queries is equivalent to many
other computational problems in a variety of fields
(Bioch and Ibaraki 1995, and Eiter and Gottlob
1995). For these applications, algorithms that are effi-
cient in terms of query and computational com-
plexity are used. In practice, queries often involve

some sort of effort, such as consulting with experts
or performing experiments. For such applications,
queries far surpass computations in terms of cost.
This paper is therefore focused on minimizing the
query complexity as long as it is computationally
feasible.
The paper is organized as follows: In Section 2

some background information on monotone Boolean
functions is provided. An inference objective is pro-
posed in Section 3 together with an approach for
optimizing it. Section 4 describes an unequal proba-
bility sampling framework for generating monotone
Boolean functions and comparing different inference
algorithms. This framework is used in Section 5 to
provide an extensive unbiased empirical comparison
of various inference algorithms. In the end, Section 6
provides some concluding remarks.

2. Some Key Properties of
Monotone Boolean Functions

Let �0�1�n denote the set of Boolean vectors defined
on n Boolean variables. A Boolean function defined
on �0�1�n is simply a mapping to �0�1�. A vector v ∈
�0�1�n is said to precede another vector w ∈ �0�1�n,
denoted by v � w, if and only if (iff) vi ≤ wi for i =
1�2� � � � �n, where vi	wi
 denotes the i-th element of
vector v (w). Similarly, a vector v ∈ �0�1�n is said to
succeed another vector w ∈ �0�1�n, iff vi ≥ wi for i =
1�2� � � � �n. If a vector v either precedes or succeeds w,
they are said to be related. A monotone Boolean func-
tion f is called non-decreasing, iff f 	v
≤ f 	w
∀ 	v�w
:
v �w, and non-increasing, iff f 	v
≥ f 	w
∀ 	v�w
: v �
w. This paper focuses on non-decreasing functions,
which are referred to as monotone, as similar results
hold for non-increasing functions.
The number of distinct monotone Boolean functions

defined on �0�1�n is denoted by �	n
. All known val-
ues of �	n
 are given in Table 1. Wiedeman (1991)
employed a Cray-2 processor for 200 hours to com-
pute the value for n equal to 8. This gives a flavor
of the complexity of computing the exact number of
monotone Boolean functions. For larger values of n

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 145

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Table 1 History of Monotone Boolean Function Enumeration for n =
1�2� � � � �8

��1�= 3, ��2�= 6, ��3�= 20
��4�= 168 by Dedekind (1897)
��5�= 7�581 by Church (1940)
��6�= 7�828�354 by Ward (1946)
��7�= 2�414�682�040�998 by Church (1965)
��8�= 56�130�437�228�687�557�907�788 by Wiedeman (1991)

the best known asymptotic, is due to Korshunov
(1981):

�	n
∼



2	 n

n/2
e		 n
n/2−1
	

1
2n/2

+ n2

2n+5 −
n

2n+4

� for even n�

2	 n
n/2−1/2
+1

× e
		 n

n/2−3/2
	
1

2	n+3
/2 −
n2

2n+6 −
n

2n+3
+	 n
n/2−1/2
	

1
2	n+1
/2 +

n2

2n+4

�

for odd n�
(1)

Figure 1 shows a partially ordered set (or poset for
short). In general, posets can be formed by a set
of vectors together with the precedence relation �.
A poset can be viewed as a directed graph where
each vertex corresponds to a vector and a directed
edge from vertex v to vertex w, represents the prece-
dence relation v � w. When drawing a poset as a
directed graph, the edges’ directions and the redun-
dant edges are often omitted without loss of informa-
tion, as in Figure 1. The graph of a poset is acyclic
and so all of the directions can be forced either up
or down the page by ordering the vertices by layers.
In Figure 1, the edges’ directions all go upwards on
the page. Relations that are transitively implied by

1110 1101 01111011

1010 1001 01010110

1000 0100 00010010

1100 0011

1111

0000

Figure 1 The Poset Formed by �0�1�4 and the � Relation

other relations, are considered redundant. For exam-
ple, the relation 	0000
 � 	1100
 is redundant because
it is implied by the two relations 	0000
 � 	1000
 and
	1000
� 	1100
.
An ordered set of related vertices v1 � v2 � · · · �

vp is sometimes called a chain, while an antichain (or
layer) consists of a set of unrelated vertices. When a
set of vertices is partitioned into as few layers as pos-
sible, a layer partition is formed. For a particular layer
partition, the layers can be ordered as L1�L2� � � � �Lr

so that a vertex vi ∈ Li cannot succeed another vertex
vj ∈ Lj if i < j. The layer partition for the set �0�1�n

is unique, while its chain partition is not unique. In
fact, the way one partitions �0�1�n into chains can be
used effectively in the inference of monotone Boolean
functions, as in the symmetric chain partition used by
Hansel (1966) and Sokolov (1982).
Two posets, P1 and P2, are said to be isomorphic if

there exists a one-to-one mapping of the vertices in
P1 to the vertices in P2, where the precedence rela-
tions are preserved. That is, if v1 → v2 and w1 → w2,
where v1�w1 ∈ P1 and v2�w2 ∈ P2, then v1 � w1 iff
v2 � w2. The dual of a poset P is the poset Pd result-
ing from reversing all of the precedence relations in
P. A poset P is called connected if all pairs of vertices
v and w in P, are connected. That is, either v and
w are directly related to each other, or there exists a
sequence of vertices v1�v2� � � � � vr in P for which all
the pairs 	v�v1
� 	v1�v2
� � � � � 	vr�w
 are related.
A vector v∗ is called a lower unit of a Boolean func-

tion f if f 	v∗
 = 1 and f 	v
 < f	v∗
∀v: v � v∗ and
v �= v∗. Similarly, a vector v∗ is called an upper zero
if f 	v∗
 = 0 and f 	v
 > f	v∗
∀v: v � v∗ and v �= v∗.
Lower units and upper zeros are also referred to as
border vectors. For any monotone Boolean function f ,
the set of lower units and the set of upper zeros are
unique, and either one of these two sets uniquely
identifies f .
Let m	f
 be the number of border vectors asso-

ciated with a Boolean function f . It is well known
(Engel 1997) that m	f
 achieves its maximum value
for a function that has all its border vectors on two
of the most populous layers of �0�1�n. That is, the fol-
lowing equation holds:

max
f∈Mn

m	f
=
(

n

�n/2�
)
+
(

n

�n/2�+1

)
� (2)

146 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

where Mn denotes the set of all monotone Boolean
functions defined on �0�1�n. The borders of any
monotone Boolean function f are the only vectors that
require evaluations in order to completely reconstruct
the function. The value of m	f
 therefore works as
a lower bound on the number of queries. The right
hand side of equation (2) gives a flavor of the number
of queries that may be required.

3. The Inference Objective and
Its Solution

The purpose of this section is to develop an effi-
cient algorithm for the guided inference problem. In
Section 3.1, the efficiency of an inference algorithm is
defined in the form of an optimization objective. An
optimal solution to the proposed objective is devel-
oped in Sections 3.2 and 3.3. The resulting optimal-
ity conditions are summarized using an evaluative
criterion in Section 3.4. The inference process using
this criterion is demonstrated on a real life example
in Section 3.6. Some other evaluative criteria are dis-
cussed in Section 3.5.

3.1. The Proposed Inference Objective
An inference algorithm that performs fewer queries
than another algorithm when reconstructing a partic-
ular monotone Boolean function is considered more
efficient on that particular function. However, it has
not been clear how to compare algorithms on the
entire class of monotone Boolean functions defined
on �0�1�n. The main existing algorithms (Hansel 1966,
Sokolov 1982, and Gainanov 1984) focus on the upper
bounds of their query complexities. Unfortunately,
the worst-case scenario reflects the algorithm perfor-
mance on a few select functions. It does not reflect
what to expect when executing an algorithm on an
arbitrary monotone Boolean function. For example,
algorithms that implement the subroutine described
in Gainanov (1984) indirectly suggest minimizing the
upper bound on the number of queries per border
vector. These algorithms greatly favor the simplest
functions (which may only have a single border vec-
tor), over the complex functions (with up to

(
n

�n/2�
)+(

n
�n/2�+1

)
border vectors). This subroutine is also used

in Valiant (1984), Makino and Ibaraki (1995), and
Boros et al. (1997).
With no prior knowledge (other than monotonic-

ity) about the inference application, each function is
equally likely to be encountered. The functions should
therefore carry the same weight in the objective.
Let �	A�f
 denote the fixed number of queries per-
formed by algorithm A, in reconstructing the mono-
tone Boolean function f . The objective in this paper is
to minimize the average number of queries over the
entire class of monotone Boolean functions defined
on �0�1�n. This can be expressed mathematically as
follows:

Q	n
=min
A

∑
f∈Mn

�	A�f

�	n

� (3)

Before the solution strategy is developed, a gener-
alized version of problem (3) is described and solved
in Section 3.2 via recursion. In Section 3.3, this recur-
sive solution methodology is then used as a model for
solving problem (3) but with an improved efficiency
due to overlapping subproblems.

3.2. Minimizing the Average Inference Cost
In some applications the cost of inferring a particular
monotone function depends on the vectors evaluated,
as well as the order in which they were evaluated.
As an example, consider searching for articles (among
a set of a articles) containing as many of a specific
set of keywords �k1� k2� � � � � kn� as possible. For the
sake of simplicity, assume that searching for p key-
words in a single article incurs a cost of p units and
that this cost is additive for several article searches.
Suppose you find b articles containing keywords k1
and k3 (i.e., query (10100� � �0)). Then searching for arti-
cles containing keywords k1, k2 and k3 (i.e., query
(11100� � �0)) among the b articles found from query
(10100� � �0) is easier than searching all of the a arti-
cles over again. Thus, the total cost for evaluating
vector (10100� � �0) followed by (11100� � �0) is 2a+ 3b.
If, on the other hand, the query order is reversed,
and the query (11100� � �0) does not result in any arti-
cles, then all the a articles have to be searched again
for query (10100� � �0). Now the total cost for evaluat-
ing vectors �	11100 � � �0
� 	10100 � � �0
� is 5a 	= 2a+3a
,
which is greater than the cost 2a+ 3b of the queries

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 147

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

�	10100 � � �0
� 	11100 � � �0
�, even though the conclu-
sion is potentially the same, i.e., that f 	10100 � � �0
 =
0 (article(s) found) and f 	11100 � � �0
 = 1 (no articles
found).
To describe this general cost situation, let C	A�f

be the cost incurred by algorithm A in inferring the
function f ∈Mn. An objective that gives equal weight
to each monotone Boolean function can be written as:

C	n
=min
A

∑
f∈Mn

C	A�f

�	n

� (4)

Objective (4) involves arbitrary costs and is equiva-
lent to the intuitive notion of minimizing the average
inference cost. As such, it is a generalized version of
objective (3) which considers the queries themselves
as the cost unit.
The tree in Figure 2 illustrates an approach for

solving problem (4) for n = 2. This approach is espe-
cially useful when the query costs depend on the
vectors evaluated, as well as the order in which
they were evaluated. The tree shows all possible
ordered sequences of vector selections. A path starts
at the root, with the 4 unclassified vectors (00), (01),
(10), and (11), and ends at one of the leaves with
the empty set ��. Here, a path denotes a specific
ordered sequence of vector selections performed for
a particular function. The topmost path, for exam-
ple, corresponds to the sequence of queries �	11
� 	10
,
	01
� 	00
� performed in inferring the uniform ONE
function. On each path there are two types of nodes:
one that corresponds to a set of unclassified vec-
tors and one that corresponds to a vector choice. For
a node corresponding to a set of unclassified vec-
tors, the out branches represent the possible vector
choices. For a node corresponding to a vector choice,
the upward and downward branches represent the
two possible function values, 1 and 0, respectively.
The resulting tree contains 76 leaves, for the simple
problem consisting of only 4 vectors.
A specific instance of problem (4) for n = 2, asso-

ciates a cost with each leaf in this tree. Let ci
denote the cost of the i-th leaf from the top, for
i = 1�2� � � � �76. To find the optimal choice for each
node corresponding to a set of unclassified vectors,
the minimum costs can be accumulated by backtrack-
ing from the leaves. As an example, consider the set

�01�00� obtained after querying vectors (11) and (10)
on the topmost path of the tree in Figure 2. If vec-
tor (01) is queried next, the costs c1� c2� c3 associated
with the three topmost leaves will be used in objective
(4). If instead the vector (00) is queried next, the costs
c4� c5� c6 associated with the next three leaves, will be
used in the place of c1� c2� c3 in the objective. There-
fore, vector (01) should be selected if c1+c2+c3 ≤ c4+
c5+ c6, otherwise (00) should be selected. If the sum
of the costs are equal, either one of the vectors can
be selected in order to minimize the total cost. Once
the minimum cost is found for this node, it becomes a
part of establishing the minimum cost for nodes pre-
ceding it on the path. This property is known as an
optimal substructure, which can be used to compute
the minimum cost for the initial set of vectors, in a
recursive fashion, as Lemma 1 establishes.
For a node with the unclassified vectors V =

�v1�v2� � � � � vp� corresponding to the prior vector
selections W = �w1�w2� � � � �wr� and their classifica-
tions F = �f 1� f 2� � � � � f r�, define the cost function as
follows:

C1	W�F�V

=




c	W�F
� if �V � = 0�

min
i=1�2�����p

{
N	V i

0
C1	�W�vi���F�0��V i
0
+N	V i

1
C1	�W�vi���F�1��V i
1

N 	V i
0
+N	V i

1

}
�

otherwise�

where
c	W�F
 is the fixed cost associated with inferring
the monotone function f defined by f 	w1
 = f 1,
f 	w2
 = f 2� � � � � f 	wr
 = f r via the sequence of
queries W ,

V i
z is the set of unclassified vectors of V remain-
ing after f 	vi
 = z has been established for i =
1�2� � � � � p and z= 0�1, and

N	V
 is the number of monotone Boolean functions
defined on V .

Lemma 1. The recursive function C1	��� ��� �0�1�n

yields the minimum average inference cost C	n
.

Proof: The correctness follows by the construction
of the function C1	W�F�V
. The individual costs that
make up the cost function C	n
 are recursively accu-
mulated by selecting the set of costs that achieve the
smallest average.

148 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Figure 2 The Exhaustive Vector-Selection Tree for �0�1�2

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 149

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

3.3. Minimizing the Average Number of Queries
To guarantee the minimum average inference cost, the
entire vector selection tree has to be traversed in order
to accumulate the costs via backtracking. Objective (3)
possesses two properties that can be used to reduce
this computational burden. The first apparent prop-
erty is that there is a fixed query cost cq	v
 associated
with the query of each vector v ∈V . That is, the cost of
evaluating a particular vector does not affect the cost
of evaluating any of the other vectors. The total cost
associated with a sequence of queries is then simply
the sum of the individual costs, since it is indepen-
dent of the order of the queries. As a result, the cost of
evaluating a particular set of vectors is fixed, and can
be written as a recursive function. For a node with
the unclassified vectors V = �v1�v2� � � � � vp�, define the
cost function as follows:

C2	V

=



0� if �V � = 0�

min
i=1�2�����p

{
N	V i

0
	C2	V
i
0
+cq 	v

i

+N	V i
1
	C2	V

i
1
+cq 	v

i

N 	V i
0
+N	V i

1

}
�

otherwise�

where cq	v
i
 is the cost incurred from evaluating vec-

tor vi.

Lemma 2. The recursive function C2	�0�1�n
 yields the
minimum average inference cost C	n
 when the individual
query costs are fixed.

Proof: Suppose the cost of queries are given by
cq	v

i
 for i = 1�2� � � � � p. Then, the cost of eval-
uating a particular sequence of vectors does not
depend on the order in which they were queried.
In other words, the fixed cost function c	�w1�

w2� � � � �wp�� F
 equals cq	w
1
+cq	w

2
+· · ·+cq	w
p
. As

a result, C2	V
 equals C1	��� ���V
. From Lemma 1
C1	��� ��� �0�1�n
 equals C	n
.
Lemma 2 provides a way to compute the mini-

mum average query cost in a more efficient man-
ner than Lemma 1. In particular, branches out of
nodes corresponding to unclassified vector subsets
are required only for unique vector subsets. As an
example, consider the node corresponding to the set
�10�01� which appears twice in the tree in Figure 2.
Suppose its associated parameters (i.e., the minimum

average query cost C2	�10�01�
 and the number of
monotone Boolean functions N	�10�01�

 are stored
once they are computed at one of the two nodes.
Then the other node can be bound, avoiding repetitive
branching. A further bounding improvement based
on the property of independent query costs is given
next in Lemma 3.

Lemma 3. If a set V of vectors consists of a set of
mutually unrelated subsets �V 1�V 2� � � � �V p�, the follow-
ing equation holds:

N	V
= N	V 1
N 	V 2
 · · ·N	V p
�

Furthermore, if the query costs are independent, then the
following equation holds:

C2	V
= C2	V
1
+C2	V

2
+· · ·+C2	V
p
�

Proof: For any monotone Boolean function f
defined on V , fixing the value of f 	vi
 for vi ∈
V i does not restrict the value of f 	w
 for w ∈
W = �V 1�V 2� � � � �V i−1�V i+1� � � � �V p�. That is, for each
distinct monotone Boolean function defined on V i,
there are N	W
 distinct monotone Boolean functions
defined on V . Therefore, the number of monotone
Boolean functions defined on V is N	W
N	V j
. By
further reducing W in a similar manner for the other
unrelated subsets, this expression can be reduced to
N	V 1
N 	V 2
 · · ·N	V p
.
Suppose that optimal vectors are selected from

subset V i until they are all classified, incurring a
minimum cost of C2	V

i
. Since vectors from V i cannot
concurrently classify any of the vectors belonging to
W = �V 1�V 2� � � � �V i−1�V i+1� � � � �V p�, all of the vectors
in W are still unclassified. Therefore, the total aver-
age cost for V is accumulated by C2	V

i
+C2	W
. The
average cost of the set of vectors W can be further
reduced to C2	V

1
+C2	V
2
+· · ·+C2	V

p
.
As a result of Lemma 3, the computations can be

distributed in a parallel fashion to unrelated vector
subsets since the parameters of any vector set can be
computed independently from its connected subsets.
A second apparent property of problem (3) is that

the vector query costs are equal for all vectors. That
is, c	v
= c ∀v ∈ V . This fact leads to Lemma 4, which
provides even more general bounding rules. Let the
two possible vector subsets be denoted by V i

z , for

150 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

z= 0 and 1, when vector vi is selected from set V i (for
i = 1�2).

Lemma 4. If the poset mapping 	V 1��
 → 	V 2��
 is
isomorphic and maps vertex v1 to vertex v2, then the fol-
lowing equations hold:

N
(
V 1
0

)= N
(
V 2
0

)
�N

(
V 1
1

)= N
(
V 2
1

)
�

Furthermore, if the query costs are equal for all the vectors,
then the following equations hold:

C2

(
V 1
0

)= C2

(
V 2
0

)
and C2

(
V 1
1

)= C2

(
V 2
1

)
�

Proof: This lemma can be proved by induction.
As a basis of the induction consider the two non-
isomorphic posets: a single vector v (from V 1 or V 2)
and the empty set. The parameters N	v
 = 2 and
C2	v
= c are obviously fixed. For the purpose of com-
pleteness also define N	��
 = 1 and C2	��
 = 0. Now
suppose two sets of vectors V 1 and V 2 are given
for which the isomorphic mapping 	V 1��
→ 	V 2��

maps v1 to v2. If v1 is selected from V 1, then it results
in a pair of posets that are isomorphic to the pair of
posets that result from selecting v2 from V 2. Thus, if
the equations hold true for the resulting posets, then
they also hold true for the original posets 	V 1��
 and
	V 2��
. This fact shows the recursive step, and com-
pletes the proof.
Lemma 4 implies that a recursive look up proce-

dure can focus on non-isomorphic posets instead of
vector subsets, as implied by Lemma 2. That is, the
vector subsets used for Lemma 2 are now formed
into posets using the precedence relations. Since the
mapping of vector subsets to non-isomorphic posets
is many-to-one, the storage requirement of the algo-
rithm is reduced. Once the N and C2 values are com-
puted for a particular poset, they can be stored. Later,
when an isomorphic poset is encountered at another
node in the tree, these values can be looked up.

Corollary 5. For a poset P = 	V ��
 and its dual
poset Pd = 	V d��
, the following equation holds:

N	V
= N	V d
�

Furthermore, if the query costs are all equal, then the fol-
lowing equation holds:

C2	V
= C2	V
d
�

Proof: The proof is similar to that of Lemma 4
where the sets V and Vd replace the roles of the sets
V 1 and V 2, respectively.
Lemmas 2 through 4 and Corollary 5 form the crite-

ria for a bounding procedure under the assumptions
of independent and equal query costs. In partic-
ular, only nodes corresponding to connected, non-
dual, and non-isomorphic posets are branched upon.
Figure 3 shows the resulting reduced search tree when
these bounding criteria are applied to the tree shown
in Figure 2. As an example of bounding, consider
the connected poset 	�10�01�00���
. This poset is iso-
morphic to the dual of 	�11�10�01���
 and therefore
only one of them has to be branched upon, as seen in
Figure 3. A size comparison of the trees in Figures 2
and 3 indicates the potential effectiveness of these
bounding criteria.
To simplify the implementation, the algorithm was

divided into two steps as shown in Figure 4. Since the
cost unit is queries, c	v
= 1∀v ∈ V , the inference cost
function C2 is here denoted by Q. In the first step, all
the connected, non-dual, and non-isomorphic posets
that can be encountered during the inference process
are generated and stored in library L. This is realized
in lines 1 and 2 of MINIMIZE-AVE-Q in Figure 4. In
particular, the edge vertices are recursively removed
from the connected, non-dual, and non-isomorphic
posets, starting from �0�1�n and stopping when �� is
encountered. Here, an edge vertex of a poset, denotes
a vertex that has either no related vertices preceding
or no related vertices succeeding it. Lemma 6 veri-
fies that the subroutine GENERATE-POSET-LIBRARY
actually creates all possible connected, non-dual, and
non-isomorphic posets encountered in the inference
process.
In the second step, shown in lines 3 through 18 of

MINIMIZE-AVE-Q, the N and Q parameters and the
set of associated optimal vertices V are computed for
all of the posets stored in library L. Since the parame-
ters of a poset of size k (i.e., one with k vertices) can be
written as a combination of the parameters of posets
of sizes strictly less than k, the posets are processed in
increasing size, starting with the empty poset which
has the parameters N = 1 and Q = 0.
Each time Q	P
, N	P
, or V	P
 is called in the algo-

rithm MINIMIZE-AVE-Q, a search is performed for

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 151

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Figure 3 The Vector-Selection Tree for �0�1�2 Restricted to Connected, Non-Dual, and Non-Isomorphic Posets

the poset in library L that is isomorphic to P or its
dual. For the implementation of this algorithm, the
size k (the simplest isomorphism invariant) and an
index number i, are used to uniquely identify posets
in L. Therefore, a specific poset can be denoted by
Lk	i
, and the updates of Q	P
, N	P
, or V	P
 in lines
16 through 18 of the algorithm MINIMIZE-AVE-Q can
be performed in one sweep by accessing Qk	i
, Nk	i
,
and Vk	i
.
There are five subroutines in Figure 4 whose details

have been left out for the purpose of brevity. The
subroutine CONNECTED(P) should return TRUE if
the poset P is connected and FALSE otherwise. The
subroutine NONE-ISOMORPHIC(L�P) should return
FALSE if library L contains a poset that is iso-
morphic to P, and TRUE otherwise. The subrou-
tine REMOVE-CONE(P�v�f) should return the poset
formed by removing the vertex v and the vertices
that precede v if f = 0 (the vertices that succeed v
if f = 1) from P. The subroutine MAX-UNRELATED-
POSETS(P) should return the largest partition of P
into a set of posets so that they are mutually unre-
lated. The subroutine EDGE-VERTICES(P) should
return the set containing all the edge vertices of
poset P.

MINIMIZE-AVE-Q(n)
1 P ← ({0,1}n,�)
2 GENERATE-POSET-LIBRARY(P)
3 Q({}) ← 0
4 N({}) ← 1
5 for i ← 1 to 2n

6 for each P ∈ L[i]
7 for each v ∈ P
8 for each f ∈ {0,1}
9 Pf ← REMOVE-CONE(P, v, f)
10 Nf ← 1
11 Qf ← 0
12 for each Punr ∈ MAX-UNRELATED-POSETS(Pf)
13 Nf ← Nf × N(Punr)
14 Qf ← Qf + Q(Punr)
15 q(v) ← (N1 × Q1 + N0 × Q0)/(N1 + N0) + 1
16 Q(P) ← min{q(v): v ∈ P}
17 V(P) ← {v: q(v) = min{q(v): v ∈ P}}
18 N(P) ← N1 + N0

GENERATE-POSET-LIBRARY(P)
1 for i ← 0 to |P|-1
2 L[i] ← {}
3 L[|P|] ← P
4 GENERATE(P)

GENERATE(P)
1 if |P| > 0,
2 for each v ∈ EDGE-VERTICES(P)
3 P ← P - {v}
4 if CONNECTED(P),
5 if NONE-ISOMORPHIC(L[|P|],P)
6 L[|P|] ← L[|P|] ∪ {P}
7 GENERATE(P)

Figure 4 The Algorithm Used to Compute Q�n�

152 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Lemma 6. By recursively removing the edge vertices
and only storing connected, non-dual, and non-isomorphic
posets, all the posets observable in the inference process are
generated.

Proof: Suppose a non-edge vertex v is selected
from a poset P = 	V ��
, and this query potentially
reduces the vertices in V to V0 (if f 	v
= 0), and V1 (if
f 	v
= 1). Then, there exists a pair of edge vertices v0,
v1 ∈ V , for which v0 � v � v1. That is, V −v1 contains
V1 and V −v0 contains V0. Therefore, none of the sub-
sets obtained from fixing the function value for non-
edge vertices are removed from consideration.

Theorem 7. The algorithm MINIMIZE-AVE-Q(n)
computes the minimum average number of queries Q(n).

Proof: The correctness of MINIMIZE-AVE-Q	n

follows from Lemmas 2, 3, 4, 6, and Corollary 5 as
follows. Lemma 6 proves that all the needed con-
nected, non-dual, and non-isomorphic posets are gen-
erated in lines 1 and 2 of MINIMIZE-AVE-Q. Lem-
mas 2, 3, 4, and Corollary 5 prove that these posets are
sufficient to compute the minimum average number
of queries. MINIMIZE-AVE-Q is consistent with the
recursive function of Lemma 2, while taking advan-
tage of Lemmas 3 and 4, and Corollary 5 in comput-
ing the minimum average number of queries.
Figure 5 shows a part of the tree that is traversed

by the algorithm MINIMIZE-AVE-Q(n) when it is exe-
cuted for n equal to 3. Here, Lk	i
 denotes the i-th
poset generated of size k. For example, the root of
the tree L8	1
 denotes �0�1�3. To reduce the size of the
tree, only one branch is shown for vectors resulting
in the same pair of isomorphic posets. This way, at
least one optimal vector is preserved. For example,
when branching on L8	1
, the vector (000) results in
the same pair of posets as the vector (111). As a result,
they carry the same 	N0�N1�Q0�Q1
 values, and (000)
is optimal iff (111) is. By branching on only one of
them, at least one optimal vector is preserved. The
same relation holds between the vectors (100), (010),
(001), (110), (101) and (011). Therefore, only one vec-
tor from each group, say (000) and (100), needs to
be branched on, as seen in Figure 5. In general, only
�n/2� out of the 2n branches out of the initial poset
�0�1�n are needed.

At a first glance, it could seem as though this
bounding criterion could further improve upon the
algorithm MINIMIZE-AVE-Q. However, determining
whether two vectors result in the same pair of isomor-
phic posets, is computationally equivalent to finding
their parameters, which is exactly what MINIMIZE-
AVE-Q does in the first place. Therefore, this bound-
ing criterion is only used to simplify visualization
of the search tree. Also, the analysis in Section 3.4
requires knowing all the optimal solutions. For that
purpose, finding a single optimal solution is not
sufficient.
The algorithm MINIMIZE-AVE-Q(n) generates all

possible connected, non-dual, and non-isomorphic
posets that are observable in the inference problem
defined on the set �0�1�n. It also finds all the cor-
responding optimal vertices. Figure 6 shows these
posets and their corresponding optimal vertices for n
equal to 4. For some of the posets, the optimal choices
seem to be intuitive. For others, the optimal choices
seem to be obscure. Section 3.4 addresses the issue of
summarizing the optimality conditions for the posets
in Figure 6 and for some posets observed for n > 4.

3.4. Summarizing the Poset Optimality
Conditions via an Evaluative Criterion

The total number of connected, non-dual, and non-
isomorphic posets generated by MINIMIZE-AVE-Q(n)
is given in Table 2 for n equal to 1�2� � � � �5. There are
at least half as many posets as the number of mono-
tone Boolean functions for n equal to 1�2� � � � �5 (given
in Table 1). The number of posets for n equal to 6 is
probably of a magnitude greater than 106, making it
close to intractable to store all of them.
When solving problem (3) for n greater than 6, the

optimal approach presented in Section 3.3 is currently
computationally infeasible. However, the optimality
conditions for the posets generated for n up to and
including 5 can be summarized in a simpler form than
storing the posets in their entirety. The goal of this
section is to establish a simple summary of the poset
optimality conditions in the form of a vector evalua-
tive criterion. Since an inference algorithm that tackles
larger posets will eventually decompose into smaller
posets for which optimal vectors are known, this eval-
uative criterion will hopefully be close to the optimal
for larger problems.

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 153

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Figure 5 Part of the Tree Traversed by MINIMIZE-AVE-Q(3)

In solving problem (3) optimally for n equal to 4,
many different and complex posets were encountered.
The optimal vertices of these posets seemed to dis-
play two general properties. First, the optimal vertices
tend to be in the vertical middle. More specifically, all
posets in Figure 6 have at least one optimal vertex
in the most populous layer. This observation alone
is not sufficient to pinpoint an optimal vector. The
second property observed is that the optimal vertices

also tend to be horizontal end points. In particular, ver-
tices related to only one other vertex in the posets in
Figure 6 are always optimal. For posets that do not
contain such a vertex, vertices with few related ver-
tices tend to be optimal more often than others within
a layer. To study the idea of a vertical middle and
a horizontal end point, consider two specific posets,
namely, a chain and a sawtooth, as shown in Figure 7.
Examples of these posets can also be seen in Figure 6.

154 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Figure 6 All the Connected, Non-Dual, and Non-Isomorphic Posets Generated by MINIMIZE-AVE-Q(4) With the Optimal Vertices Circled

The first row from the top has two chain posets (1st

and 2nd columns from left) and five sawtooth posets
(1st�2nd�3rd�6th, and 8th column from the left).
A chain is an arbitrarily tall connected poset with

minimum width. For a chain with h vertices the num-
ber of monotone Boolean functions equals h+ 1. The
minimum average number of queries is given by:

Qc	h
 = Qc	�h/2�
	�h/2�+1
+Qc	�h/2−1/2�
	�h/2−1/2�+1

h+1

+1
{≥ log2	h+1

≤ �log2	h
�+1�

where Qc	0
= 0. These values are obtained by invari-
ably selecting a middle vertex (i.e., the �h/2�-th
vertex).
A sawtooth is an arbitrarily wide connected poset

in which each vertex has two related vertices, except
the end vertices which are related to only one other
vertex each. Consider a sawtooth poset with w ver-

Table 2 The Number of Posets Generated by MINIMIZE-AVE-Q(n)

Poset Size n = 1 n = 2 n = 3 n = 4 n = 5 Poset Size n = 5

0 1 1 1 1 1 17 476
1 1 1 1 1 1 18 373
2 1 1 1 1 1 19 262
3 1 1 1 1 20 187
4 1 3 3 3 21 120
5 2 4 4 22 82
6 2 8 8 23 48
7 1 11 18 24 33
8 1 14 40 25 18
9 13 71 26 12
10 10 130 27 6
11 6 217 28 5
12 5 338 29 2
13 2 462 30 2
14 2 577 31 1
15 1 609 32 1
16 1 576
Total 3 5 13 84 4�688

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 155

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Sawtooth Poset

Chain Poset

Figure 7 Illustration of the Sawtooth and Chain Posets

tices. The number of possible monotone Boolean func-
tions N	w
 equals N	w−1
+N	w−2
. The minimum
average number of queries is given by:

Qs	w
 = Qs	w−1
N 	w−1
+Qs	w−2
N 	w−2

N 	w−1
+N	w−2

+1

≈ 0�7236068w+0�2291796�

where Qs	1
 = 1�Qs	0
 = 0�N	0
 = 1, and N	1
 = 2.
These values are obtained by invariably selecting one
of the end vertices. The surprising result about the
sawtooth poset is that consistently selecting a vertex
adjacent to an end vertex maximizes the average num-
ber of queries.
Figure 8 shows the average number of queries

divided by w for the sawtooth poset with w vertices.
Here, the vertices are invariably selected in three dif-
ferent ways: an end vertex (the lower curve), a middle

0 1 2 3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

/
N

u
m

b
e

r
o

f
V

e
rt

ic
e

s

log
2
(Number of V ertic es)

V ertex A djacent to an End V ertex

Middle V ertex

End V ertex

Figure 8 Average Query Complexity on the Sawtooth Poset

vertex (the oscillating curve), and a vertex adjacent to
an end vertex (the upper curve). For large w, select-
ing the end vertex results in approximately 72.36%
queries on average, as the approximation for Qs	w

given above shows.
Now consider creating an evaluative criterion based

on the ideas of vertical middle and horizontal end
points. Suppose a subset of unclassified vectors, V =
�v1�v2� � � � � vp� is given. Let K1	v

i
 and K0	v
i
 be the

number of vectors that are concurrently classified
when f 	vi
 equals 1 and 0, respectively. Invari-
ably selecting one of the vectors that have the
minimum �K1 −K0� value guarantees the minimum
average number of queries for arbitrary sized saw-
tooth and chain posets, as well as for the inference
problems with n strictly less than 5. This can be ver-
ified by considering the subset of posets encountered
by the criterion min �K1−K0�. These 14 posets are posi-
tioned in row and column numbers (1�1), (1�2), (1�3),
(1�4), (1�6), (1�8), (2�2), (2�6), (2�9), (3�5), (5�7),
(6�2), (9�1), and 	10�2
 starting from the upper left
corner of Figure 6.
Unfortunately, this criterion is not optimal for all

the posets generated for n equal to 4. It is only opti-
mal for the posets encountered when using the crite-
rion min �K1−K0�. Another drawback is that it is not
optimal for the inference problem when n is equal

156 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

to 5. However, it is probably close to optimal since
the larger posets eventually decompose into smaller
posets. The next section addresses this issue further
and discusses some other evaluative criteria.

3.5. Some Other Evaluative Criteria
It seems reasonable to attempt to classify as many
vectors as possible for each query. The two criteria
max	K1	v
+K0	v

 and max	K1	v
K0	v

 are consis-
tent with this philosophy (see Judson 1999). They are
extremely counterproductive to minimizing the aver-
age query complexity and should be avoided.
As an example, consider the set of vectors �0�1�4.

All the vectors on the middle layer are optimal, as can
be observed in Figure 6. The criterion max	K1	v
+
K0	v

 selects either the (0000) or the (1111) vector,
which happens to maximize the average number of
queries. The criterion max	K1	v
K0	v

 ties the entire
set of vectors. This shows how intuition can lead to
poor and ambiguous choices.
There is also a logical explanation for why these

two evaluative criteria are counterproductive. Vectors
that are able to concurrently classify more vectors,
are also more likely to be classified by others. Fol-
lowing this line of thought, the evaluative criterion
min	K1	v
+K0	v

 seems reasonable. This criterion is
similar to min �K1	v
−K0	v
�, but it does not satisfy
the same optimality conditions for the inference prob-
lem when n is equal to 4.
Consider the poset in the 9th row and 1st column

in Figure 6. Here, the five optimal vectors have the
values 	K1�K0
 = 	2�4
, or (3�4), and the seven non-
optimal vectors have the values (1�12), (4�2), (5�2),
(1�7), or (1�8). The criterion min �K1	v
− K0	v
� is
equal to 1 for an optimal vector with the values
(3�4). It is therefore guaranteed to select an optimal
vector for this poset. On the other hand, the crite-
rion min	K1	v
+K0	v

 is equal to 2 for optimal and
non-optimal vectors with the values (2�4) and (4�2),
respectively. Therefore, it may select one of the non-
optimal vectors for this poset.
All the posets generated when n is equal to 3 are

given in rows and columns (1�1), (1�2), (1�3), (1�4),
(1�5), (1�6), (1�7), (1�8), (2�2), (2�3), (3�1), and (4�3),
starting from the upper left corner of Figure 6. The
criterion min �K1	v
−K0	v
� is optimal for these posets

and their duals. Unfortunately, the two values K1 and
K0 are not sufficient to construct an evaluative crite-
rion that is optimal for all the posets generated when
n is greater than 3, as Theorem 8 establishes.

Theorem 8. An evaluative criterion defined as a func-
tion of the two values K1 and K0 cannot be optimal for all
the posets observable in the inference problem when n is
greater than 3.

Proof: Let z	K1�K0
 denote a function of the
parameters K1 and K0. Without loss of general-
ity, suppose that an evaluative criterion is defined
as min z	K1�K0
. First, consider the poset in the
8th row and 6th column in Figure 6. In this
poset, all the optimal vectors satisfy 	K1�K0
 =
	1�4
, and four of the non-optimal vectors sat-
isfy 	K1�K0
 = 	4�2
. For the criterion min z	K1�K0

to select an optimal vector for this poset, the
inequality z	1�4
 < z	4�2
 has to hold. Similarly, the
inequality z	4�1
 < z	2�4
 is implied by the dual
of this poset. Notice that this poset and its dual
are both observable in the inference process when
n > 3.
Now, consider the poset in the 9th row and the

6th column in Figure 6. In this poset, all the optimal
vectors satisfy 	K1�K0
 = 	2�4
, and one of the non-
optimal vectors satisfy 	K1�K0
 = 	1�4
. For the crite-
rion min z	K1�K0
 to select an optimal vector for this
poset, the inequality z	2�4
 < z	1�4
 has to hold. Sim-
ilarly, the inequality z	4�2
 < z	4�1
 is implied by the
dual of this poset. Notice that this poset and its dual
are both observable in the inference process when
n > 3.
This leads to an impossibility as follows z	1�4
 <

z	4�2
 < z	4�1
 < z	2�4
 < z	1�4
. In other words, no
evaluative criterion defined as a function of the two
parameters K1 and K0 can select optimal vectors for
both of these two posets and their duals.
Theorem 8 shows that the non-optimality of the

criterion min �K1−K0� for some of the posets consid-
ered is not due to the criterion itself but rather due
to lack of information. An optimal evaluative crite-
rion for n > 4, has to be based on more information
than just the K1 and K0 values, but hopefully less
than the entire poset. The objective Q	n
 assumes that

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 157

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

the underlying function should be completely recon-
structed. Suppose a limited number of queries are
allotted. Then the objective should be changed and
consequently the evaluative criterion should be mod-
ified. Figure 9 shows the average number of vectors
remaining as a function of the number of queries per-
formed for n = 5. Two evaluative criteria are used:
one corresponding to a greedy algorithm, the other
corresponding to the algorithm that sacrifices earlier
to perform better in the end.
The greedy approach (the solid line in Figure 9)

maximizes the instantaneous reduction in the aver-
age number of remaining vectors between the vec-
tor selections. The other approach (the dotted line in
Figure 9) selects the vector which is the most fre-
quent border vector among the remaining monotone
Boolean functions. The latter approach draws its moti-
vation from the fact that each border vector eventu-
ally has to be evaluated. Rather than relying on imme-
diate gratification, it tends to sacrifice early in the
inference process for the benefit of requiring fewer
queries overall.
In Figure 9, the greedy approach corresponds

to the curve that achieves the steepest instanta-

Number of Queries Performed

A
ve

ra
ge

 F
ra

ct
io

n
of

 th
e

N
um

be
r

of
 V

ec
to

rs
 L

ef
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Maximizing the Average Number of Concurrent Classifications

Maximizing the Fraction of Border Vectors

Figure 9 Classification Efficiency of Two Evaluative Criteria Over All Functions in M5

neous descent. After 6 queries, this approach loses
its momentum. From there on, the other algorithm
achieves a greater instantaneous descent. By the time
both algorithms are finished, the greedy algorithm
comes in second with an average of 13.9 queries
for complete reconstruction. The algorithm based on
maximizing the fraction border vectors, queries 13.6
vectors on the average.
In comparison to these two evaluative criteria, the

criterion min�K1 − K0� queries 13.7 vectors on the
average. However, the criterion min�K1 − K0� only
requires the subset of vectors in order to be com-
puted. The two other criteria are computationally bur-
dened by the fact that they need to generate and store
all the monotone Boolean functions. Moreover, they
both tie all the vectors in the chain poset, and the
greedy approach ties all the vectors in the sawtooth
poset.
The problem of generating and storing all mono-

tone Boolean functions defined on at most n variables
is much harder than just enumerating them, which
has only been done for n up to and including 8 (see
Table 1). Since there are about 107 monotone Boolean

158 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

functions for n equal to 6, and about 1012 for n equal
to 7, these two criteria seem feasible for at most 6 vari-
ables with current storage capacities. In contrast, the
criterion min�K1−K0� may be computed for problems
with up to about 20 variables, which involves about
1 million vectors.

3.6. An Illustration of the Criterion min�K1−K0�:
Breast Cancer Diagnosis

To demonstrate how the inference process works using
the evaluative criterionmin �K1−K0� consideroneof the
monotone Boolean functions inferred by interviewing
a radiologist in Kovalerchuk et al. (1996). The inferred
function that describes their “cancer subproblem” is
defined as follows: f 	x
 = x1x2∨ x3∨ x1x5∨ x2x5∨ x4x5,
where f 	x
= 1 if a tumorwith the features describedby
x is highly suspicious for malignancy and 0 otherwise.
Here xi describes the i-th diagnostic feature which is 1

Query 1: f (00011)=1 Query 2: f (00101)=1 Query 3: f (00110)=1 Query 4: f (11000)=1

Query 5: f (00001)=0 Query 6: f (01001)=1 Query 7: f (10001)=1 Query 8: f (00010)=0

Query 9: f (01010)=0 Query 10: f (10010)=0 Query 11: f (01100)=1 Query 12: f (00100)=1

Figure 10 The Breast Cancer Inference Process Using the Criterion min�K0-K1�

if it is “pro cancer” and 0 if it is “contra cancer”. The
individual features are defined as follows:

x1=Amount and volume of calcifications,
x2=Shape and density of calcifications,
x3=Ductal orientation,
x4=Comparison with previous exam� and

x5=Associated findings.

It should be noted that x1 and x2 are also monotone
Boolean functions that have to be inferred prior to the
inference of f . The details of that decomposition are
left out for the purpose of simplifying this illustration.
The interested reader is referred to Kovalerchuk et al.
(1996 and 2000a) for the details.
Figure 10 shows the sequence of queries and their

answers for the cancer application, when the queries
are selected based on the criterion min �K1−K0�. Below
each query, the remaining unclassified vectors are

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 159

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

shown in the form of a poset with the selected vector
circled. Initially, all of the vectors �0�1�5 are unclas-
sified. The vectors on the two middle layers all pos-
sess the same minimum value �K1 −K0� = 4. One of
these vectors (00011) is arbitrarily selected for the first
query. The radiologist is asked whether a tumor with
“pro cancer” features in comparison with previous exam-
ination (x4 = 1) and in associated findings (x5 = 1), is
considered highly suspicious for malignancy. After
the radiologist answers yes (f 	00011
 = 1), the set of
unclassified vectors is reduced and forms the poset
shown below the 2nd query.
In this poset, several vectors possess the minimum

�K1−K0� value of 0. The vector 00101 is one of them.
The radiologist is asked whether a tumor with “pro
cancer” features in ductal orientation (x3 = 1) and in
associated findings (x5 = 1), is considered highly sus-
picious for malignancy. After the radiologist answers
yes (f 	00101
 = 1), the set of unclassified vectors is
further reduced and forms the poset shown below the
3rd query.
This process continues for an additional 10 queries

shown in Figure 10. After these 12 queries, the value
of the diagnosis function f is known for all the vec-
tors v in �0�1�5. That is, the function is completely
reconstructed after 12 queries out of a possible max-
imum of 32 queries. It should also be noted that this
function has the set of 8 border vectors: �11000, 00100,
10001, 01001, 00011, 10010, 01010, 00001�. Therefore,
the minimum possible number of queries is 8.
The previous sections provided the theoretical

motivation for using the evaluative criterion min �K1−
K0� and demonstrated how this criterion is used in
practice. It was shown that this criterion minimizes
the average query complexity for n = 1�2�3�4 and
resulted in 12 queries in a breast cancer diagnosis
problem. In the next section, a framework for further
analyzing the efficiency of this approach is developed.

4. A Sampling Framework
for Comparing the
Inference Algorithms

Often, a random sample of test cases is generated to
estimate parameters such as the average algorithm
complexity over the entire population of test cases.

For an estimator to be unbiased, its expected value has
to be equal to the actual parameter value it is estimat-
ing. When some test cases are more likely to end up
in the sample, the average complexity of the sample
puts too much weight on the more likely test cases,
and too little weight on the less likely test cases. If
the probability of each test case being included in the
sample (i.e., its inclusion probability) is known, then an
unbiased estimator can be obtained. The estimators
that are presented next in Section 4.1 can be found
in most textbooks (e.g., Thompson 1992) on sampling.
The algorithm used to randomly generate monotone
Boolean functions which allows for computing these
estimators is presented in Section 4.2.

4.1. An Unbiased Estimator for the Average
Case Complexity

Consider the finite universe of fixed quantities
��1��2� � � � ���	n

�= ��	A�f
+ f ∈Mn� associated with a
particular monotone Boolean function inference algo-
rithm A. Let pi denote the probability of includ-
ing the i-th element in the sample. Horvitz and
Thompson (1952) introduced an unbiased estimator
for the total number of queries in the universe as:

,̂ =
-∑

i=1

�i

pj

�

where ��1��2� � � � ��-� are the quantities correspond-
ing to the set of - unique monotone Boolean functions
in the sample. Notice that if the sample was taken
with replacement, some monotone Boolean functions
might be selected more than once, while their corre-
sponding quantity is used but once in the estimate.
An unbiased estimator for the variance of ,̂ requires

the joint pairwise inclusion probabilities. Let pij be the
probability that elements i and j are included together
in the sample. Then, an unbiased estimator is given
by:

V̂ar	,̂
=
-∑

i=1

1−pi

p2i
�2

i +
-∑

i=1

∑
j �=i

(
pij −pipj

pipj

)
�i�j

pij

When �	n
 is known, an unbiased estimate of the
universe mean is:

.̂= ,̂

� 	n

� (5)

160 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

and a corresponding unbiased estimate of its vari-
ance is:

V̂ar	.̂
=
ˆVar	,̂

�	n
2
�

At a first glance, the only benefit of using the
inclusion probabilities, are unbiased estimators. If the
sampling technique allows for adjusting the inclusion
probabilities, however, it may be possible to adjust
them so as to reduce the variance of the estimators.
This issue is discussed further in the next section.

4.2. Randomly Generating
Monotone Boolean Functions

The problem of generating all monotone Boolean
functions is much harder than just enumerating them,
and so an exhaustive analysis becomes intractable
when n is greater than 6. As a remedy, a sample
of functions can be generated. However, a sample
that is not drawn randomly is subject to conditional
results. Also, if one generates monotone Boolean func-
tions that contain a certain number of border vec-
tors (Makino et al. 1999), for example, then one sim-
ply cannot make claims towards the general class of
monotone Boolean functions.
It is practically impossible to generate monotone

functions from a uniform distribution. In fact, it is
easy to fall into the trap of generating functions from
a distribution that deviates significantly from the uni-
form distribution. As an illustrative example, con-
sider the algorithm GENERATE-MBF as outlined in
Figure 11. It starts with all the vectors �0�1�n as
unclassified. Then it randomly selects a vector from
the unclassified vectors so that each is selected with
equal probability. In the last step, it classifies the
selected vector as 0 or 1 with (equal) probability of
1/2 and classifies all of the vectors, that are cov-
ered according to the monotonicity property, to their
appropriate values. This process is repeated until all
of the vectors are classified.
The algorithm GENERATE-MBF will indeed ran-

domly generate monotone Boolean functions, but the
functions do not have equal probabilities of being
included in the sample. In fact, these inclusion prob-
abilities vary significantly. For example, the probabil-
ity that the zero vector is classified as 1, which only
corresponds to the uniform ONE function, is greater

GENERATE-MBF(n)
1 U ← {0,1}n

2 while U ≠ {},
3 v ← SELECT-AT-RANDOM(U, 1/|U|)
4 f(v) ← SELECT-AT-RANDOM({0,1},1/2)
5 if f(v) = 0
6 W ← {w: w ∈ U, w � v}
7 f(w) ← 0, ∀ w ∈ W
8 U ← U - W
9 else
10 W ← {w: w ∈ U, w � v}
11 f(w) ← 0, ∀ w ∈ W
12 U ← U - W
13 return f

Figure 11 The Algorithm Used to Generate Monotone Boolean Func-
tions Randomly Without Inclusion Probabilities

than 2−	n+1
, the probability of selecting the zero vec-
tor during the first iteration and classifying it as 1.
That is, the inclusion probability for the ONE function
is much greater than what it would be in the uniform
sampling as the following inequality indicates:

Pr�f =ONE�≥ 2−	n+1

≫�	n
−1 (6)

Korshunov’s asymptotic to �	n
 (given in equation
(1)) provides an idea of the magnitude of the differ-
ence in inclusion probabilities for the ONE function.
The fact that certain functions have extremely high

(relative to the uniform case) inclusion probabili-
ties, comes at the expense of other functions hav-
ing extremely low inclusion probabilities. This algo-
rithm seems to generate monotone Boolean functions
with few border vectors more frequently and func-
tions with many border vectors less frequently than in
the uniform case. Suppose GENERATE-MBF is used
and the number of queries for a particular inference
algorithm significantly increases with the number of
border vectors. Then an estimate of the average query
complexity, which ignores the inclusion probabilities,
is seriously biased downwards.
Instead of the exact inclusion probability of the

ONE function, a lower bound was given by inequality
(6). This is due to the fact that inclusion probabilities
are hard to compute for GENERATE-MBF, because
there are so many different ways of generating the
same function. Since the inclusion probabilities are
essential to unbiased estimators, they need to be easy
to compute. In situations where nothing is known a
priori about the number of queries, it is also desirable

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 161

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

for the inclusion probabilities to be close to uniform.
This will lower the variance of the estimator given in
equation (5).
Finding the probability of a particular set of ran-

dom classifications is easiest if the classifications are
performed independently. If all of the vectors are clas-
sified independently, the resulting function f may not
necessarily be monotone. Therefore, consider impos-
ing monotonicity onto the function f , by creating the
pair of unique “smallest” and “greatest” monotone
functions, denoted respectively by fS and fG, that
sandwich the original function by fS ≤ f ≤ fG.
Figure 12 illustrates how the pair of monotone

Boolean functions are created from a non-monotone
Boolean function. The shaded vectors carry a function
value of 1, while the non-shaded vectors carry a func-
tion value of 0. The non-monotone function f shown
in the top of the figure has upper zeros UZ(f) =
{(1110), (1101), (0011)} and lower units LU(f) = {(0100),
(1001)}. The upper zeros of function f uniquely define
the first target monotone function fS shown in the

1110 1101 01111011

1010 1001 01010110

1000 0100 00010010

1100 0011

1111

0000

1110 1101 01111011

1010 1001 01010110

1000 0100 00010010

1100 0011

1111

0000

1110 1101 01111011

1010 1001 01010110

1000 0100 00010010

1100 0011

1111

0000

UZ(f) = {(1110), (1101), (0011)} = UZ(fS) LU(f) = {(0100), (1001)} = LU(fG)

Figure 12 Two Monotone Boolean Functions Created from a Non-Monotone Boolean Function Defined on �0�1�4

lower left of the figure. The lower units of f uniquely
define the second target monotone function fG shown
on the lower right.
The algorithm GENERATE-MBF-P(n�p) shown in

Figure 13 creates the general function f , by classifying
f 	v
 as 1 with probability p	v
, or zero with probabil-
ity 1−p	v
 for all vectors in �0�1�n. It then places all
the upper zeros of f into the set S, and all the lower
units into the set G. The first target monotone func-
tion fS is then defined by the upper zeros in S, while
the second target monotone function fG is defined by
the lower units in G.
After the two sandwich functions have been gen-

erated, their inclusion probabilities, denoted by pG

and pS , have to be computed. To that end, define the
two random monotone Boolean functions FS and FG

as the output of a single execution of the random
process GENERATE-MBF-P. Then, the inclusion prob-
ability for function f is the probability that it was
generated as the smallest or the greatest function,

162 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

GENERATE-MBF-P(n,p)
1 G ← {}, S ← {}
2 for each v ∈ {0,1}n

3 f(v) ← SELECT-AT-RANDOM({0,1}, {1-p(v),p(v)})
4 if f(v) = 1
5 W ← {w: v � w, w ∈ G}
6 if W = {}
7 G ← G ∪ {v}
8 else
7 G ← G - W
8 else
9 W ← {w: v � w, w ∈ S}
10 if W = {}
11 S ← S ∪ {v}
12 else
13 S ← S - W
14 return G, S

Figure 13 The Algorithm Used to Generate Monotone Boolean Func-
tions Randomly With Inclusion Probabilities

given by:

Pr�FS = f ∨FG = f �= Pr�FS = f �

+ Pr�FG = f �−Pr�FS = f ∧FG = f �� (7)

where

Pr�FS = f � = Pr�F 	v
= 1∀v ∈ LU	f
�

F 	v
 = 0∀v ∈ �w+ f 	w
= 0��

= ∏
v∈LU	f

p	v

∏

v∈�w+ f 	w
=0�
	1−p	v

and similarly,

Pr�FG = f � = Pr�F 	v
= 0∀ v ∈UZ	f
�

F 	v
 = 1∀ v ∈ �w+ f 	w
= 1��

= ∏
v∈UZ	f

	1−p	v

∏

v∈�w+ f 	w
=1�
p	v

and finally

Pr�FS = f ∧FG = f �= Pr�F 	v
= f 	w
∀v ∈ �0�1�n�

= ∏
v∈�w+ f 	w
=1�

p	v

∏

v∈�w+ f 	w
=0�
	1−p	v

Suppose the vector classification probability func-
tion p	v
, defined as follows, is used as input for the

algorithm GENERATE-MBF-P.

p	v
=




1/168� v = 	0000

20/168= 5/42� v ∈ �	1000
� 	0100
,

	0010
� 	0001
�
84/168= 1/2� v ∈ �	1100
� 	1010
,

	1001
� 	0110
,
	0101
� 	0011
�

148/168= 37/42� v ∈ �	1110
� 	1101
,
	1011
� 	0111
�

167/168� v = 	1111

The reasoning behind this particular definition of
p	v
 is provided immediately after this example. Sup-
pose the general function shown in the top of Figure
12 was generated as a result. Consider computing
the inclusion probabilities for the function fG shown
on the bottom right of Figure 12. The lower units
of fG are �	0100
� 	1001
�, while its upper zeros are
�	1010
� 	0011
�. Let qk denote its inclusion probability
when GENERATE-MBF-P is executed k times. Then
the inclusion probability for this function is given as
follows:

qk = 1− 	1− q1

k

Here the inclusion probability for a single execution
can be computed using equation (7) as follows:

q1 = p	0100
p	1001
	1−p	1010

	1−p	0011

× 	1−p	1000

	1−p	0010

	1−p	0001

× 	1−p	0000

+ 	1−p	1010

	1−p	0011

p	0100

×p	1100
p	1001
p	0110
p	0101
p	1110
p	1101

×p	1011
p	0111
p	1111
−p	1111
p	1110
p	1101

×p	1011
p	0111
p	1100
p	1001
p	0110
p	0101

×p	0100
	1−p	1010

	1−p	0011

	1−p	1000

× 	1−p	0010

	1−p	0001

	1−p	0000

=
(
5
42

)(
1
2

)3(37
42

)3(167
168

)
+
(
1
2

)6(5
42

)(
37
42

)4

×
(
167
168

)
−
(
167
168

)2(37
42

)7(1
2

)6(5
42

)
≈ 0�01047

If, for example, GENERATE-MBF-P was executed 20
times, the inclusion probability is equal to q20 ≈ 1−

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 163

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

	1−0�01047
20 ≈ 0�1898 for function fG. The inclusion
probability for other monotone Boolean functions can
be computed in a similar fashion.
To generate the functions close to uniformly, a ran-

dom 0 or 1 vector classification should occur accord-
ing to the vectors respective fraction of monotone
Boolean functions that classify it as 0 or 1. Let �k	n
 be
the number of monotone Boolean functions defined
on �0�1�n that classifies a vector v, for which �v� = k,
as 1. Therefore, a vector with hamming weight k
should be classified 1 with probability �k	n
/�	n
.
This procedure does not result in complete unifor-
mity, yet it is a step in its direction using independent
classifications. Equation (8) gives the known general-
izations of �k	n
.

�k	n
=




1� k = 0
�	n−1
� k = 1
�	n
/2� k = n/2, n is even
�	n
−�	n−1
� k = n−1,
�	n
−1 k = n

(8)

Equation (8) indicates that computing �k	n
 is just
as hard as computing �	n
. We computed some of the
exact values for �k	n
, which are given in Table 3. The
solid curves in Figure 14 correspond to �k	n
/�	n

for n = 1�2� � � � �6. These curves exhibit symmetric
S-shapes that change rapidly as n increases. This is
the motivation behind the transformation of the dis-
tribution function into a sigmoid function as follows:

�k	n

�	n

= e3	n�k
	k−n/2

1+ e3	n�k
	k−n/2

� (9)

Since 3	n�k
 is a function of n and k, no informa-
tion is lost or gained by the transformation. The prob-
lem of approximating �k	n
/�	n
 is merely trans-
formed into the equivalent problem of approximating

Table 3 Some Exact Values of �k�n�

�k�n� n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 0 1 1 1 1 1 1
k = 1 2 3 6 20 168 7�581
k = 2 5 14 84 2�008 595�649
k = 3 19 148 5�573 3�914�177
k = 4 167 7�413 7�232�705
k = 5 7�580 7�820�773
k = 6 7�828�353

the function 3	n�k
. However, an approximate rela-
tionship between the known 3	n�k
 values is more
transparent in Table 4 than between the known �k	n

values given in Table 3. Solving (9) for 3	n�k
 gives,

3	n�k
 = ln	�	n
−�k	n

− ln	�k	n

n/2−k
�

for n > 0�n �= 2k� and k = 0�1� � � � �n�

Furthermore, any value for 3	n�k
 in equation (8) will
give the correct value of 1/2 for �k	n
/�	n
 when n=
2k. From equation (8), it is known that �0	n
= 1, and
therefore the following equation holds:

3	n�0
= ln	�	n
−1

n/2

� for n > 0� (10)

Equation (8) also provides the relationship �1	n
 =
�	n − 1
 which further implies the following
equation:

3	n�1
 = ln	�	n
−�	n−1

− ln	�	n−1

n/2−1

�

for n > 2�

To compute the values for 3	n�0
 and 3	n�1
 only
�	n
 is needed. For n up to and including 8, the
exact values of �	n
 are known and were given in
Table 1. For n greater than 8 Korshunov’s approxima-
tion given in equation (1) can be used. However, to
compute 3	n�k
 for k > 1, a generalization is needed.
Based on the observed values in Table 4, it seems rea-
sonable to use

3	n�k
≈ 3	n−1� k−1
 for k = 1�2� � � � � �n/2�−1�

and then use the fact that 3	n�k
= 3	n−k�k
 to find
the 3	n�k
 values for k = �n/2�+1� � � � �n.
Figure 14 shows the approximated curves, for n =

1�2� � � � �6, resulting from using (10) and generaliz-
ing with 3	n�k
 ≈ 3	n− 1� k− 1
 and 3	n�k
 = 3	n−

Table 4 Some Exact Values of
�n� k�

�n� k� n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

k = 0 1.386 1.609 1.963 2.560 3.573 5.291 8.147 13�10
k = 1 1.695 2.002 2.525 3.490 5.056 7�957
k = 2 2.042 2.497

164 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 n/2 n

Exact

Approximated

n=1

n=2

n=3

n=4
n=5 n=6

Ψ
k
(n

)
/ Ψ

(n
)

Figure 14 Comparing the Exact Values to the Approximations of �k�n�/� �n�

k�k
 for k = 1�2� � � � � �n/2� − 1. The approximations
based on 3	n�k
 ≈ 3	n−1� k−1
 are probably worse
for larger k. Approximations of �k	n
/�	n
 that are
off by a few percentage points will not have a major
effect on the experiments described in Section 5.3. For-
tunately, these approximations are only needed for n

up to 11 (i.e., for k up to 5). It should be noted that it
may be necessary to work with the inclusion proba-
bilities in a log base as they get extremely small. For
example, �	11
 > 10144 using Korshunov’s asymptotic
given in equation (1).

5. Empirical Comparisons of
the Inference Algorithms

The purpose of this section is to highlight the dif-
ferences and similarities of various approaches to the
inference problem. Section 5.1 provides an overview
of the main three existing algorithms and some of
their properties. Section 5.2 demonstrates details of
these three algorithms on the breast cancer diagnosis

problem described in Section 3.5. The query complex-
ities of the three existing approaches and the eval-
uative criterion min �K1 −K0� are then compared in
Section 5.3.

5.1. Some Preexisting Algorithms
Only someone that knows the function ahead of
time, i.e., an all knowing Teacher, can achieve the
minimum number of queries for every single mono-
tone Boolean function. That is, the following equation
holds: �	Teacher� f
 = m	f
, ∀f ∈ Mn. For any algo-
rithm A, that does not have prior knowledge about
the underlying function f other than that it is mono-
tone, m	f
 can be considered as a lower bound on the
number of queries. That is, the following inequality
always holds: m	f
≤ �	A�f
, ∀f ∈Mn.
It turns out that it is possible to achieve fewer or

the same number of queries as the upper bound on
m	f
 given in inequality (2), for all monotone Boolean
functions defined on �0�1�n. One realization of this is
based on partitioning the set �0�1�n into chains, with

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 165

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

increasing length as described in Hansel (1966), and
then searching the chains in that order. The key prop-
erty of the Hansel chains is that once the function val-
ues are known for the chains of length k, the function
values are unknown for at most two vectors in each
of the next length k+2. Proof of this property can be
found in both Hansel (1966) and Sokolov (1982).
When n is odd, the shortest chains contain two vec-

tors each, and there are a total of
(

n
�n/2�

)
chains. There-

fore, the maximum number of queries used by an
algorithm searching the Hansel chains in increasing
size is 2

(
n

�n/2�
)
. When n is even, there are

(
n

n/2

)− (
n

n/2+1
)

chains of length one, and
(

n
n/2+1

)
chains of length

greater than one. Therefore, the maximum number of
queries used by an algorithm searching the Hansel
chains in increasing size is

(
n

n/2

)− (
n

n/2+1
)+ 2

(
n

n/2+1
) =(

n
n/2

)+ (
n

n/2+1
)
. That is, the following inequality holds:

�	Hansel� f
 ≤ max
f∈Mn

m	f

=
(

n

�n/2�
)
+
(

n

�n/2�+1

)
�

∀f ∈Mn� (11)

The algorithm described in Sokolov (1982) is also
based on the Hansel chains. It considers the chains in
the reverse order (i.e., in decreasing length) and per-
forms a binary search of each chain. It turns out that
Sokolov’s algorithm is much more efficient for func-
tions that have all their border vectors in the longer
Hansel chains. As an example, consider the uniform
ONE function, which has only one border vector
and this border is located in the longest chain. For
this function, Sokolov’s algorithm performs at most
�log2	n+ 1
� + 1 queries, while Hansel’s algorithm
needs at least

(
n

�n/2�
)
queries. However, Sokolov’s algo-

rithm does not satisfy the upper bound (11), as the fol-
lowing example shows. Suppose that n > 4 and even,
and the monotone Boolean function to be inferred is
defined by f 	v
= 1 if �v�>n/2, and 0 otherwise. Then
the set of border vectors is �v+ �v� = n/2 or n/2+ 1�
and m	f
 = (

n
n/2

)+ (
n

n/2+1
)
. In Sokolov’s algorithm, the

first vector w1, submitted for evaluation is a border
vector since �w1� = n/2. The second vector w2 is not a

border vector because �w2� = �3n/4�>n/2 and n/2+1.
Therefore, the following inequality holds:

�	Sokolov�f
 >

(
n

�n/2�
)
+
(

n

�n/2�+1

)
�

for at least one f ∈Mn�

In an attempt to provide a unified efficiency test-
ing platform, Gainanov (1984) proposed to evaluate
algorithms based on the number of queries needed
for each border vector. To that end, he presented an
algorithm that searches for border vectors one by one.
At the core of the algorithm is a subroutine that takes
as input any unclassified vector v, and finds a bor-
der vector by successively evaluating adjacent vec-
tors. This subroutine, which will be referred to as
FIND-BORDER(v), is also used in the algorithms of
Boros et al. (1997), Makino and Ibaraki (1995), and
Valiant (1984). Given any unclassified vector as input,
this subroutine will find a border vector using at most
n+1 queries. As a result, an algorithm A that utilizes
any method to generate unclassified vectors and uses
the subroutine FIND-BORDER to find the border vec-
tors, satisfies the following upper bound:

�	A�f
≤m	f
	n+1
�∀f ∈Mn�

For the majority of monotone Boolean functions, the
expression m	f
	n+ 1
 is greater than or equal to 2n,
in which cases the bound is trivial.

5.2. Illustration of the FIND-BORDER, Hansel’s,
and Sokolov’s Algorithms on the Breast
Cancer Diagnosis Application

For the purpose of contrasting the different algo-
rithms, the monotone Boolean function for the breast
cancer diagnosis application described in Section 3.5
will be used. Please recall that the function was
defined as follows: f 	x
= x1x2∨x3∨x1x5∨ x2x5∨x4x5.
The inference processes for the subroutine FIND-
BORDER, Hansel’s algorithm, and Sokolov’s algo-
rithm are given in Figures 15, 16, and 17, respec-
tively. These figures are similar to Figure 10 shown in
Section 3.6 for the criterion min �K1−K0�.
The FIND-BORDER algorithm may select vectors

that are already classified. The posets in Figure 15

166 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Query 1: f (00000)=0 Query 2: f (10000)=0 Query 3: f (11000)=1 Query 4: f (10100)=1

Query 5: f (10010)=0 Query 6: f (10011)=1 Query 7: f (00001)=0 Query 8: f (10001)=1

Query 9: f (01001)=1 Query 10: f (00101)=1 Query 11: f (00011)=1 Query 12: f (00100)=1

Query 13: f (00000)=0 Query 14: f (01000)=0 Query 15: f (11000)=1 Query 16: f (01100)=1

Query 17: f (01010)=0 Query 18: f (01011)=1

Figure 15 The Breast Cancer Inference Process Using the FIND-BORDER Algorithm

only contain the unclassified vertices, and therefore
some of the posets do not have a circle (queries 13,
15, 16 and 18). In a practical situation these queries
can be answered by the function inferred thus far
and is therefore not posed to the radiologist. The total
number of actual queries used by this algorithm is
therefore, 18− 4 = 14. The first vector fed to FIND-
BORDER is 00000, and the first sequence of queries
are (00000, 10000, 11000, 10100, 10010, 10011). The sec-
ond vector fed to FIND-BORDER is 00001, and the
second sequence of queries are (00001, 10001, 01001,
00101, 00011). Similarly, the third and fourth sequence
of queries are (00100, 00000), and (01000, 11000, 01100,
01010, 01011).
Hansel’s algorithm searches the 10 Hansel chains

in increasing size given by: (00011, 10011), (00101,
10101), (00110, 00111), (01001, 01101), (01010, 01011),
(00001, 10001, 11001, 11101), (00010, 10010, 11010,

11011), (00100, 10100, 10110, 10111), (01000, 01100,
01110, 01111), (00000, 10000, 11000, 11100, 11110, 11111).
As noted in Section 4.1, the number of queries per
chain is guaranteed to be less than or equal to 2.
Figure 16 shows the Hansel query process where the
respective number of queries are here 1, 1, 1, 1, 1, 2,
2, 1, 0, 1, for a total of 11 queries.
Sokolov’s algorithm searches the 10 Hansel chains

in decreasing size: (00000, 10000, 11000, 11100, 11110,
11111), (01000, 01100, 01110, 01111), (00100, 10100,
10110, 10111), (00010, 10010, 11010, 11011), (00001,
10001, 11001, 11101), (01010, 01011), (01001, 01101),
(00110, 00111), (00101, 10101), (00011, 10011). It per-
forms a binary search within each of these chains.
Figure 17 shows this process, where the respective
number of queries per chain are here 3, 2, 2, 2, 2, 2, 1,
0, 0, 1, for a total of 15 queries.

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 167

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Query 1: f (00011)=1 Query 2: f (00101)=1 Query 3: f (00110)=1 Query 4: f (01001)=1

Query 5: f (01010)=0 Query 6: f (00001)=0 Query 7: f (10001)=1 Query 8: f (10010)=0

Query 9: f (11010)=1 Query 10: f (00100)=1 Query 11: f (11000)=1

Figure 16 The Breast Cancer Inference Process Using Hansel’s Algorithm

The number of queries performed by each of the
four methods Hansel, min �K1 −K0�, FIND-BORDER,
and Sokolov for the breast cancer diagnosis applica-
tion were 11, 12, 14, and 15, respectively. The eight
border vectors for this function are �11000, 00100,
10001, 01001, 00011, 10010, 01010, 00001�. That is,
the number of queries used by Teacher is 8, since it
represents the minimum number of queries required
to infer the function. The number of queries per
border vector are 11/8 = 1�375, 12/8 = 1�5, 14/8 =
1�75, and 15/8 ≈ 1�875 for the Hansel, min �K1 −
K0�, FIND-BORDER and Sokolov algorithms, respec-
tively. This represents the algorithms’ performance on
only one of the 7,581 monotone Boolean functions
defined on �0�1�5, and is far from conclusive. The
next section provides the results from more extensive
comparisons.

5.3. Experimental Results
The different inference algorithms described in
Section 4.1, do not specify which vector to select when
there are ties. In particular, the Sokolov and Hansel
algorithms may have to choose between two vec-
tors that make up the middle of a particular chain.

Furthermore, an algorithm that uses the subroutine
FIND-BORDER needs to be fed an unevaluated vec-
tor, of which there may be many. Even the evalu-
ative criterion min �K1 −K0� which was described in
Section 3.4 may result in ties. For the purpose of com-
paring the algorithms on the same ground and with-
out introducing another aspect of randomness, ties
were broken by selecting the first vector in the list of
tied vectors.
Figure 18 shows the number of queries for each of

the inference algorithms distributed over all mono-
tone Boolean functions in the set M5. The average
number of queries are labeled with small squares on
the x-axes of the respective histograms. In this figure,
the average number of queries for an algorithm A is
given by: ∑

f∈M5

�	A�f

�	5

�

For the Teacher, the evaluative criterion, Hansel’s
algorithm, Sokolov’s algorithm, and the algorithm
based on the subroutine FIND-BORDER, the averages
are 9.4, 13.7, 14.5, 16.0, and 18.3, respectively. Here, the
evaluative criterion is probably close to the optimal.

168 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Query 1: f (11000)=1 Query 2: f (00000)=0 Query 3: f (10000)=0 Query 4: f (01100)=1

Query 5: f (01000)=0 Query 6: f (10100)=1 Query 7: f (00100)=1 Query 8: f (00010)=0

Query 9: f (10010)=0 Query 10: f (00001)=0 Query 11: f (10001)=1 Query 12: f (01010)=0

Query 13: f (01011)=1 Query 14: f (01001)=1 Query 15: f (00011)=1

Figure 17 The Breast Cancer Inference Process Using Sokolov’s Algorithm

Another nice characteristic of the evaluative criterion
is that it is the most consistent of all the algorithms.
It performs between 10 and 18 queries for 99.6% of
the monotone Boolean functions. In contrast, the algo-
rithm based on the subroutine FIND-BORDER is the
least consistent with between 8 and 25 queries for
99.6% of the monotone Boolean functions.
The results in Figure 19 are based on an exhaus-

tive analysis (i.e., all the monotone functions were
generated) for n up to and including 5. For n greater
than 5 random samples of functions were generated
by the algorithm GENERATE-MBF-P(n�p) using the
estimate of ��v�	n
/�	n
 constructed in Section 4.2 for
p	v
 for all v ∈ �0�1�n. The algorithm was executed
1,000 times for n equal to 6, 7, and 8, while the num-
ber of executions was reduced to 100 times for n equal

to 9, 10, and 11 because of time limitations. That is,
2000 functions were generated for n equal to 6, 7
and 8, and 200 functions for n equal to 9, 10, and
11, since each execution results in a pair of functions.
This is the maximum number of functions used in
the estimate, because the functions are generated with
replacement. However, since the likelihood of gen-
erating the same functions more than once is small
(especially for larger values of n) the effective sample
size was generally close to these maxima.
The Horvitz-Thompson estimator given by equa-

tion (5) is used to compute the averages for n greater
than 5. The average number of queries is normal-
ized by the maximum possible number of queries
2n so that the magnitude of all the averages in
Figure 19 are not overshadowed by the large values

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 169

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

5 10 15 20 25
0

1000
T

e
a

c
h

e
r

5 10 15 20 25
0

1000

m
in

|K
1
-K

0
|

5 10 15 20 25
0

1000

H
a

n
s

e
l

5 10 15 20 25
0

1000

S
o

k
o

lo
v

5 10 15 20 25
0

1000

F
IN

D
-B

O
R

D
E

R

Num ber of Queries

Figure 18 The Query Complexities on the Set �0�1�5

obtained for n equal to 11. As a consequence, two
algorithms that result in parallel curves in such a plot,
have an exponential (in n) difference in the average
number of queries. Also, the gap between the curves
in Figure 19 and the horizontal line Average Number
of Queries/2n = 1 (not shown in the figure) can be
thought of as the benefit of the monotonicity assump-
tion. This is due to the fact that 2n is the number of
required queries when the underlying function is not
necessarily monotone.
The curve titled “Teacher” represents the lower

bound on the number of queries for every single func-
tion. Therefore, it is expected that a few extra queries
are required on the average. Since the heuristic based
on the evaluative criterion min �K1−K0� achieves the
minimum average number of queries for n up to 4, it

can be thought of as a lower bound on the average,
and its gap between “Teacher” quantifies the benefits
of knowing the actual function beforehand.
Figure 19 paints a clear picture of how the pre-

existing inference algorithms fare against each other.
Hansel’s algorithm was the best performer by far,
Sokolov’s came in second and an algorithm using the
subroutine FIND-BORDER (also used by Gainanov
1984, Valiant 1984, Makino and Ibaraki 1995, and
Boros et al. 1997) was a distant third. In fact, since the
differences between Hansel and Sokolov, and Sokolov
and FIND-BORDER seem to increase with n, the
corresponding difference in the average number of
queries increases at rate greater than exponentially
with n.

170 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

1 2 3 4 5 6 7 8 9 10 11

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Teacher

m in|K
1
 - K

0
|

Hansel

Sokolov

FIND-BORDE R

Number of V ariables , n

A
ve

ra
g

e
 N

u
m

b
e

r
o

f
Q

u
e

ri
e

s
 /

 2
n

Figure 19 The Average Query Complexities on the Set �0�1�n

The difference between the curves for Hansel and
“Teacher” decreases as n increases. However, the
evaluative criterion min �K1−K0� seemed to perform
about 2% better than Hansel’s algorithm. This dif-
ference is especially clear in Figure 19 for n up to
and including 8. For larger values of n, the high vari-
ance of our estimates makes it hard to distinguish
the two curves, but the overall decreasing trends
remain intact. It might seem that a 2% decrease is
insignificant, but writing it as 2n×0�02 shows its real
magnitude.
Figure 20 shows the number queries each of the

inference algorithms uses per border vector on the
average. That is, for each inference algorithm A,
the quantity given by:∑

f∈Mn

�	A�f

�	Teacher� f

�

is computed for n = 1�2� � � � �11. Again, the average
values for n = 1�2� � � � �5 are exact values, and the

average values for n= 6�7� � � � �11 are estimated. The
same ranking as for the average query complexity
holds for n = 1�4�5� � � � �11. An algorithm using the
subroutine FIND-BORDER seems to perform about
2 queries per border vector for larger values of n	>
4
, while the criterion min �K1−K0� seems to level off
close to 1.1 queries per border vector for n= 9�10 and
11. Even in situations where one knows that the num-
ber of border vectors tends to be small, the criterion
min �K1−K0� still is the best alternative, unless n = 2
or 3 when Sokolov’s algorithm is the best alternative.

6. Concluding Remarks
The recent focus on the computational complexity has
come at the expense of a drastic increase in the query
complexity. In fact, the more recent the inference algo-
rithm is, the worse it performs in terms of aver-
age query complexity (and average query complexity
per border vector for n > 3). The subroutine, here

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 171

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

1 2 3 4 5 6 7 8 9 10 11
1

1.2

1.4

1.6

1.8

2

m in|K
1
 - K

0
|

Hansel

Sokolov

FIND-BORDE R

Num ber of Variables , n

A
ve

ra
g

e
 N

u
m

b
e

r
o

f
Q

u
e

ri
e

s
 p

e
r

B
o

rd
e

r
V

e
c

to
r

Figure 20 The Average Query Complexities per Border Vector on the Set �0�1�n

referred to as FIND-BORDER, is the most commonly
used in the recent literature (Gainanov 1984, Valiant
1984, Makino and Ibaraki 1995, and Boros et al. 1997)
and its performance was by far the worst. Therefore,
the framework for unbiased empirical comparison of
inference algorithms developed in this paper seems to
be long overdue.
Even though guaranteeing the minimum average

number of queries is currently only computationally
feasible for relatively few variables (i.e., up to 5 or
6), the recursive algorithm presented here revealed
the non-intuitive nature of the optimal solutions.
While only the monotone Boolean functions defined
on �0�1�n were studied here, these particular vector
subsets are associated with many applications in their
own right. Furthermore, the recursive algorithm exe-
cutes just as well for monotone Boolean functions
defined on any reasonably sized set of vectors. The
only requirement to guarantee the minimum average

query cost is that the assumption of equal query costs
holds.
The optimal solutions paved the way for the eval-

uative criterion min �K1 − K0� that probably would
not have been developed (due to its non-intuitive
nature) without the consultation of the optimal solu-
tions. This near optimal evaluative criterion extends
the feasible problem sizes to up to about 20 vari-
ables (which involves about 1 million vectors). When
the number of variables exceeds 20, computing the
evaluative criterion might become intractable, while
Hansel’s algorithm will most likely still perform the
best on the average. When creating the chain partition
used in Hansel (1966) and Sokolov (1982) becomes
intractable, finding border vectors one by one using
the subroutine FIND-BORDER is the last but perhaps
still computationally feasible resort.
In some applications, where additional proper-

ties may be known about the underlying mono-
tone Boolean function, it may be beneficial to use a

172 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

modified objective. For example, the application may
put a limit on the number of lower units, shifting the
focus of the optimal vertices from the vertical cen-
ter to the vertical edge of the poset. It would also
be interesting to see how the optimal dialogue with
the oracle changes as the equal query cost assump-
tion is modified, as in the keyword search described
in Section 3.2.
The problem of minimizing the average query com-

plexity is extended to that of inferring a monotone
Boolean function from a stochastic oracle in Torvik
and Triantaphyllou (2001a), and to that of inferring
a pair of nested monotone Boolean functions from a
pair of deterministic oracles in Torvik and Trianta-
phyllou (2001b). For a unified and more detailed ver-
sion of these articles the interested reader is referred
to Torvik (2002).

Acknowledgments
The authors would like to thank Dr. Ilya Shmulevich at the
Tampere University of Technology in Finland, Dr. Dean Jud-
son at the US Census Bureau, and the anonymous review-
ers whose thoughtful comments enhanced the quality of this
research. The authors also gratefully acknowledge the support
from Office of Naval Research (ONR) Grants N00014-95-1-0639 and
N00014-97-1-0632.

References
Ben-David, A. 1992. Automatic generation of symbolic multi-

attribute ordinal knowledge-based DSSs: methodology and
applications. Decision Sciences 23 1357–1372.

Bioch, J. C., T. Ibaraki. 1995. Complexity of identification and dual-
ization of positive Boolean functions. Information and Computa-
tion 123 50–63.

Bloch, D. A., B. W. Silverman. 1997. Monotone discriminant func-
tions and their applications in rheumatology. Journal of the
American Statistical Association 92 144–153.

Boros, E., P. L. Hammer, J. N. Hooker. 1994. Predicting cause-effect
relationships from incomplete discrete observations. SIAM
Journal on Discrete Mathematics 7 531–543.

Boros, E., P. L. Hammer, T. Ibaraki., K. Makino. 1997. Polynomial-
time recognition of 2-monotonic positive Boolean func-
tions given by an oracle. SIAM Journal on Computing 26
93–109.

Church, R. 1940. Numerical analysis of certain free distributive
structures. Duke Mathematical Journal 6 732–734.

Church, R. 1965. Enumeration by rank of the free distributive lattice
with 7 generators. Notices of the American Mathematical Society
11 724.

Dedekind, R. 1897. Über zerlegungen von zahlen durch ihre
grössten gemeinsamen teiler. Festschrift Hoch. Brauhnschweig u.
ges Werke II 103–148 (in German).

Eiter, T., G. Gottlob. 1995. Identifying the minimal transversals of a
hypergraph and related problems. SIAM Journal on Computing
24 1278–1304.

Engel, K. 1997. Encyclopedia of Mathematics and its Applications 65:
Sperner Theory. Cambridge University Press, Cambridge, MA.

Fellegi, I. P., A. B. Sunter. 1969. A theory for record linkage. Journal
of the American Statistical Association 64 1183–1210.

Fredman, M. L., L. Khachiyan. 1996. On the complexity of dual-
ization of monotone disjunctive normal forms. Journal of Algo-
rithms 21 618–628.

Gainanov, D. N. 1984. On one criterion of the optimality of
an algorithm for evaluating monotonic Boolean functions.
U.S.S.R. Computational Mathematics and Mathematical Physics 24
176–181.

Hansel, G. 1966. Sur le nombre des foncions Booleenes mono-
tones de n variables. C. R. Acad. Sci. Paris 262 1088–1090
(in French).

Horvitz, D. G., D. J. Thompson. 1952. A generalization of sampling
without replacement from a finite universe. Journal of the Amer-
ican Statistical Association 47 663–685.

Judson, D. H. 1999. On the Inference of Semi-Coherent Structures
from Data. Master’s thesis, Dept. of Mathematics, University of
Nevada, Reno, NV.

Judson, D. H. 2001. A partial order approach to record linkage. Fed-
eral Committee on Statistical Methodology Conference, Arlington,
VA, November 14–16.

Korshunov, A. D. 1981. On the number of monotone Boolean func-
tions. Problemy Kibernetiki 38 5–108 (in Russian).

Kovalerchuk, B., E. Triantaphyllou, A. S. Deshpande. 1996. Interac-
tive learning of monotone Boolean functions. Information Sci-
ences 94 87–118.

Kovalerchuk, B., E. Triantaphyllou, J. F. Ruiz, V. I Torvik, E. Vitayev.
2000a. The reliability issue of computer-aided breast cancer
diagnosis. Computers and Biomedical Research 33 296–313.

Kovalerchuk, B., E. Vityaev. 2000b. Data Mining in Finance. Kluwer
Academic Publishers, Boston, MA.

Makino, K., T. Ibaraki. 1995. A fast and simple algorithm for
identifying 2-monotonic positive Boolean functions. Proceed-
ings of ISAACS’95, Algorithms and Computation, Springer-Verlag,
Berlin, Germany. 291–300.

Makino, K., T. Ibaraki. 1997. The maximum latency and identifica-
tion of positive Boolean functions. SIAM Journal on Computing
26 1363–1383.

Makino, K., T. Suda, H. Ono, T. Ibaraki. 1999. Data analysis by
positive decision trees. IEICE Transactions on Information and
Systems E82-D 76–88.

Shmulevich, I. 1997. Properties and Applications of Monotone Boolean
Functions and Stack Filters. Ph.D. dissertation, Dept. of Electrical
Engineering, Purdue University, West Lafayette, IN.

INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002 173

TORVIK AND TRIANTAPHYLLOU
Minimizing the Average Query Complexity of Learning Monotone Boolean Functions

Sokolov, N. A. 1982. On the optimal evaluation of monotonic
Boolean functions. U.S.S.R. Computational Mathematics and
Mathematical Physics 22 207–220.

Thompson, S. K. 1992. Sampling. John Wiley & Sons, New York.
Torvik, V. I., E. Triantaphyllou. 2001a. Guided inference of stochas-

tic monotone Boolean functions. Working paper, Dept. of Psy-
chiatry, University of Illinois at Chicago.

Torvik, V. I., E. Triantaphyllou. 2001b. Guided inference of nested
monotone Boolean functions. Working paper, Dept. of Psychi-
atry, University of Illinois at Chicago.

Torvik, V. I. 2002. Data Mining and Knowledge Discovery: A Guided
Approach Based on Monotone Boolean Functions. Ph.D. disserta-

tion, Dept. of Industrial Engineering, Louisiana State Univer-
sity, Baton Rouge, LA.

Valiant, L. G. 1984. A theory of the learnable. Communications of the
ACM 27 1134–1142.

Ward, M. 1946. Note on the order of the free distributive lattice.
Bulletin of the American Mathematical Society 52 423.

Wiedemann, D. 1991. A computation of the eight dedekind number.
Order 8 5–6.

Winkler, W. 1995. Matching and record linkage. B. G. Cox, D. A.
Binder, B. N. Chinnappa, eds. Business Survey Methods. John
Wiley & Sons, New York.

Accepted by John N. Hooker, Jr; received March 2000; revised June 2001, September 2001; accepted November 2001.

174 INFORMS Journal on Computing/Vol. 14, No. 2, Spring 2002

