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Scope and Purpose--One of the critical challenges in learning a set of rules (logical clauses) is to derive a 
very small number of rules, which still satisfy the pertinent requirements. These requirements are derived 
from positive (successes) and negative examples (failures). The present paper uses some graph theoretic 
approaches in establishing ways for partitioning large learning problems and also determining bounds on 
the minimum number of rules derivable from given sets of positive and negative examples. 

Abstract--Given two sets of positive and negative examples, the inductive inference problem is to infer a 
small set of logical clauses which appropriately classify the examples. A graph theoretic approach is used to 
establish a lower limit on the minimum number of required clauses. Furthermore, the findings of this 
paper reveal methods for partitioning the original data and thus solving efficiently large scale problems. 
Copyright © 1996 Elsevier Science Ltd 

1. I N T R O D U C T I O N  

The capability of a system to learn from experience has long been accepted as the main requirement 
for building a truly intelligent system. Although there are many types of learning, learning from 
examples is the most widely examined type of learning. Complexity issues of this type of learning 
have been studied by Valiant [1,2], Kearns et  al. [3], and Pitt and Valiant [4]. A number of algorithms 
which implement learning from examples can be found in Carbonell et  al. [5], Dietterich and 
Michalski [6], Quinlan [7-9], Triantaphyllou et  al. [10,11], Kamath et  al. [12], and Utgoff [13]. 

In the type of learning considered in this paper examples are classified either as positive or 
negative. Then, the issue is to determine a Boolean expression which classifies all the positive and 
negative examples correctly. Usually, such a Boolean function is expressed in the conjunctive 
normal form (CNF) or in the disjunctive normal form (DNF). See, for instance, Blair et  al. [14], 
Cavalier et  al. [15], Hooker [16,17], Jeroslow [18,19], Kamath et  al. [12,20], and Williams [21,22]. 
Peysakh in [23] describes an algorithm for converting any Boolean expression into CNF. 

The objective of this paper is to determine a lower bound on the number of the CNF (or DNF) clauses 
which are needed to correctly classify a given set of examples. In addition, efficient approaches are 
derived which can effectively partition the input data into smaller groups before processing by a learning 
algorithm. In this way, large learning problems can be solved more efficiently. 
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The main idea of this paper is described in the following illustration. Suppose that a series of 
examples (binary vectors) is somehow known. These examples were classified as either positive 
examples or negative examples. Such a situation is common. For instance, applicants for admission 
to a particular college could be characterized by high school performance, college placement exams, 
etc. and are either admitted (positive examples) or rejected (negative examples). This paper 
considers the case in which the examples are vectors with binary components (0 or 1). For this 
illustration, suppose that the following positive (denoted as E +) and negative (denoted as E-)  
examples are known: 

E+ = 
[i 1 0 0 

and E-  = 
0 1 

0 0 

-1 0 1 0 -  

0 0 0 1 

1 1 1 1 

0 0 0 0 

1 0 0 0 

1 1 1 0 

(The 4 rows in E + represent 4 positive examples and the 6 rows in E -  represent 6 negative examples.) 
What we seek is a set of Boolean clauses which correctly classify all the examples. One set of  Boolean 
clauses (in so-called conjunctive normal form) is as follows: 

(A 2 V A4) 

(42 v 43) 

(A~ v A3 V 24). 

If the vector (0,1,0,0) (i.e. the first positive example) is interpreted as (F, T,F,F), (i.e. F =  0 and T=  1), 
then observe that this vector, as well as each positive example, satisfies all three Boolean clauses. 
Furthermore, each negative example is not satisfied by at least one of the three clauses. Note that 
these three clauses correctly classify all ten examples. The main goal of this paper is to establish a 
lower bound on the number of  clauses needed to correctly classify any set of positive and negative 
examples. One might inquire, for instance, whether it is possible that only two clauses are required 
to correctly classify all the examples in this illustration. If it were known that a lower bound was 
three, then, in terms of  relative simplicity, these three clauses constitute an optimal set. These ideas 
and notation are formalized in the next section. 

2. SOME DEFINITIONS AND TERMINOLOGY 

Let {A l, A2, A3 ..... At} be a set of t Boolean predicates or atoms. Each atom Ai (i = 1,2,3 ..... t) can be 
either true (denoted by 1) or false (denoted by 0). Let F be a Boolean function over these atoms. For 
instance, the expression (AI V A2) A (A 3 V 44) is such a Boolean function, where " v "  and "A" stand 
for the logical "OR" and "AND" operators, respectively. That is, F is a mapping from {0,1 }t 
{0,1 } which determines for each combination of  truth values of the arguments A1, A2, A3 ..... At of F, 
whether F is true or false (denoted as 1 and 0, respectively). 

For  each Boolean function F, the positive examples are the vectors v e {0,1,} t such that F(v)= 1. 
Similarly, the negative examples are the vectors v e {0,1,} t such that F(v)= 0. Therefore, given a 
function F defined on the t atoms {A1, A2, A3,. . ,  At}, then a vector v e {0,1 }t is either a positive or a 
negative example. Equivalently, we say that a vector vE{0,1,}r is accepted (or rejected) by a Boolean 
function F if and only if the vector v is a positive (or a negative) example of F. For instance, let F be 
the Boolean function (AIVA2)A(A3VA4). Consider the two vectors vt=(1,0,0,0) and 
v2 --- (1,0,0,1). Then, it can be easily verified that F(vO = 1. That is, the vector Vl is a positive example 
of the function F. However, the vector v2 is a negative example of F [since F(v2)= 0]. 

At this point some additional definitions are also introd.uced. Let v e {0,1,}t be an example (either 
positive or negative). Then, pc{0, 1._} t is defined as the complement of the example v. Similarly, let E be 
a collection of  examples. Then, E is defined as the complement of the collection E. A Boolean 
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expression is in CNF or D N F  if it is in the form (I) or (II), respectively: 

k 

A(V a,) 
j=l  iEpj 

and 

(I) 

k 
V(A ai)' (II) 
j=l iEpj 

where ai is either Ai or Ai and pj is the set of indexes. 
In other words, a CNF expression is a conjunction of  disjunctions, while a D N F  expression is a 

disjunction of  conjunctions. 
The following theorem proved by Triantaphyllou and Soyster in [24] states an important property 

which exists when CNF and D N F  systems are inferred from collections of  positive and negative 
examples. 

Theorem 1 (Triantaphyllou and Soyster [24]): 
Let E ÷ and E-  be the sets of  positive and negative examples, respectively. A CNF system given as (I) 
satisfies the constraints of the E ÷ and E-  sets if and only if the DNF system given as (II) satisfies the 
constraints of ~ (considered as the positive examples) and ~ (considered as the negative 
examples). 

This theorem is stated here because the graph theoretic developments throughout this paper 
assume that a system is derived in CNF form. However, since a clause inference algorithm which 
derives D N F  expressions (such as, for instance, the SAT approach described in Kamath et al. [12]) 
can also derive CNF expressions (by applying the previous theorem), the findings of  this paper are 
applicable both to CNF and D N F  cases. 

In summary, a set of  positive examples is denoted as E ÷ and a set of  negative examples is denoted 
as E-.  Given these two sets of  positive and negative examples, the constraints to be satisfied by a 
system (i.e. a Boolean function) are as follows. In the CNF case, each positive example should be 
accepted by all the disjunctions in the CNF expression and each negative example should be rejected 
by at least one of  the disjunctions. In the case of  D N F  systems, any positive example should be 
accepted by at least one of the conjunctions in the DNF expression, while each negative example 
should be rejected by all the conjunctions. 

3. THE REJECTABILITY GRAPH OF TWO COLLECTIONS OF EXAMPLES 

This section presents the motivation and definition of a special graph which can be easily derived 
from positive and negative examples. To understand the motivation for introducing this graph, 
consider a situation with t = 5 atoms. Suppose that the vector v~ = (1,0,1,0,1) is a positive example 
while the two vectors v2 = (1,0,1,1,1) and v3 = (1,1,1,0,1) are negative examples. For the positive 
example vl, note that At, 42, A3, 44, and A5 are true (or, equivalently, 41, A2, 43, A4 and 4 s are 
false). Similar interpretations exist for the remaining two examples v2 and v3. 

Denote by ATOMS(v) the set of  the atoms that are true for a particular (either positive or 
negative) example v. With this definition, one obtains: 

ATOMS(vj)  = ATOMS((1,0,  1,0, 1)) = {Al, 42, A3,44, As} 

ATOMS(v2) = ATOMS((1,0,  1, 1, I)) = {A1,42, A3, A4, A5} 

ATOMS(v3) = ATOMS((1, 1, 1,0, 1)) = {AI, A2, A3, 44, As}. 

Now consider a single CNF clause (i.e. a disjunction), denoted as C, of the form: V~l ai (where ai is 
either Ai or Ai). Then, the clause C accepts an example v (i.e. v is a positive example of  C) if and only 
if at least one of the atoms in the set ATOMS(v) is also one of the atoms in the expression V~l  ai. 
Otherwise, the example v is not accepted (i.e. v is a negative example of  C). For instance, if the clause 
C is defined as: C = (4,] 2 V A4), then the examples vl and v2 are accepted by C, while the example v3 is 
not accepted. 
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Now observe that there is no single CNF clause which can simultaneously reject the two negative 
examples v2 and v3, while at the same time accept the positive example v~. This is true because any 
clause which simultaneously rejects the two examples v2 and v3, should not contain any of the atoms 
in the union of the two sets ATOMS(v2) and ATOMS(v3). But, if none of the atoms of the set {Ai, A2, 
42, A3, A4, 44, As} = ATOMS(v2) tA ATOMS(v3) is present in the clause, then it is impossible to 
accept the positive example Vl = (1,0,1,0,1). Therefore, given any clause which accepts the positive 
example v~, the previous two negative examples v2 and v3 cannot also be rejected by this clause. 

From the above considerations it follows that given three examples vl, v:, and v3, then the 
examples v2 and v3 are rejectable by a single clause (disjunction), subject to the example vt, if and 
only if the following condition is true: 

ATOMS(vl) ~ ATOMS(v2) tA ATOMS(v3). 

In general, given a set of positive examples E ÷, then two negative examples vl and v2 are rejectable 
by a single clause if and only if the condition in the following theorem is satisfied: 

T h e o r e m  2: 
Let E + be a set of positive examples and Vl, v 2 be two negative examples. There exists a CNF clause 

which accepts all the positive examples and rejects both negative examples v~ and v2 if and only if: 
ATOMS(vi) g ATOMS(v1) tA ATOMS(v2), for each positive example vi e E +. 

The above theorem follows directly from the previous considerations. Given two collections of 
positive and negative examples, denoted as E + and E-, respectively, Theorem 2 motivates the 
construction of a graph G= (V, E) as follows: 

V= { V1, 1"2, 1"3 ..... VM2, where 3'/2 is the cardinality of E- (i.e. each vertex corresponds to one 
negative example in E-), and 

E= {(Vi, Vj) if and only if the i-th and the j-th examples in E- are rejectable by a single clause 
(subject to the examples in E+)}. 

We denote this graph as the rejectability graph (or the R-graph) of E + and E-. The previous 
theorem indicates that it is computationally straightforward to construct this graph. If there are ME 

negative examples, then the maximum number of edges is M2(M2 - 1) Therefore, the rejectability 
2 

M2(M2 - 1) simple rejectability examinations. graph can be constructed by performing 2 

An illustrative example 
Consider the following E ÷ and E- sets: 

0 1 0 

1 1 0 
E+= 

0 0 1 

1 0 0 

1 

0 0 

0 1 
, E - - ~  

1 0 

1 1 

1 

0 1 0 

0 0 1 

1 1 1 

0 0 0 

0 0 0 

1 1 0 

Since there are 6 negative examples, there are 6 × 5/2= 15 possible pairwise comparisons (i.e. 
single rejectability tests). For instance, the first (v~) and third (v3) negative examples 
correspond to the vertices VI and V3, respectively. Since: ATOMS(vl)UATOMS(v3)-- 
{A1,A2,A3,A4,A2,44) ~ ATOMS(vi), for each vi E E +, it follows that there is an edge which 
connects the vertices V1 and 1"3 in the rejectability graph. The rejectability graph G, which 
corresponds to this illustrative example, is presented in Fig. 1. [] 

4. PROPERTIES OF THE REJECTABILITY GRAPH 

The rejectability graph G of a set of positive and a set of negative examples possesses a number of 
interesting properties. Two of these properties refer to the cliques of the rejectability graph. A clique 
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Fig. 1. The rejectability graph of  E + and E . 

of a graph is a subgraph in which all the nodes are connected with each other. The minimum clique 
cover number [denoted as k(G)] is the fewest number of cliques needed to cover the vertices of G (see, 
for instance, Golumbic [25]). The following theorem refers to any clique of the rejectability graph. 

Theorem 3: 
Suppose that the two sets E + and E-  are given and ~ is a subset o fk  negative examples from E-  

(k < size of set E-) with the property that the subset can be rejected by a single CNF clause which 
also accepts each of the positive examples in E +. Then, the vertices corresponding to the k negative 
examples in the rejectability graph G, form a clique of size k. 

Proof: 
Consider any two examples v~ and v 2 in the subset ~ .  Since all the members in ~ can be rejected 

by a single clause, obviously the examples Vl and v2 can be rejected by this single clause. From the 
definition of the rejectability graph G, it follows that there is an edge connecting the corresponding 
two nodes in G. Clearly this situation is true for any pair of examples in the subset ~ .  Therefore, the 
vertices which correspond to the k negative examples in ~ form a clique in G of size k. [] 

The previous theorem states that any set of negative examples which can be rejected by a single 
clause corresponds to a clique in the rejectability graph. However, the converse is not true. That is, 
not every clique in the rejectability graph corresponds to a set of negative examples which can be 
rejected by a single clause. To show this consider the following illustrative example. 

An illustrative example. 
Consider the following sets E ÷ and E-: 

[i °° E+ = [1 1 1],E- = 1 0 

0 1 

It can be easily verified that any pair of the three negative examples in E- can be rejected by a single 
clause which also accepts the positive example in E +. For instance, the first and second negative 
examples are rejected by the clause (A3), which also accepts the positive example in E +. Similarly, 
the first and third negative examples can be rejected by (A2), while (A0 rejects the second and third 
examples. In all cases, these clauses accept the single example in E +. Therefore, the corresponding 
rej~tability graph is a triangle (i.e. a clique with three nodes, see also Fig. 2). However, a clause 
which would reject all the three negative examples should not include any atoms from the following 
set: 

ATOMS(vl) U ATOMS(v2) t_J ATOMS(v3) 

= ATOMS((1,0,0)) tJ ATOMS((0, 1,0)) U ATOMS((0,0, 1)). 

= { A 1 , A 2 , A 3 , A I , , 4 2 , , 4 3 }  
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[1,O,Ol 

[0,1,0] [0,o,l] 

Fig. 2. The rejectability graph for the second illustrative example. 

Obviously, no such clause exists. Therefore, a minimum size set of CNF clauses which satisfy the 
requirements of the current examples is: (A3) V (.42), which is of size 2.0 

5. ON THE MINIMUM CLIQUE COVER OF THE REJECTABILITY GRAPH 

Consider two sets of positive and negative examples E + and E-,  respectively. Let 0 be the 
complement of the rejectability graph G of the two sets of examples. Recall that the complement of a 
graph is constructed as follows: the complement graph has exactly the same vertices as the original 
graph. There is an edge between any two vertices if and only if there is no edge between the 
corresponding vertices of the original graph. Next, define w(G) as the size of  the maximum clique of 
the graph G and k(G) as the minimum clique cover number of the rejectability graph G. Let r be the 
minimum number of CNF clauses required to reject all the examples in E-, while accepting all the 
examples in E + . Then, the following theorem states a lower bound [i.e. the minimum clique cover 
k(G)] on the minimum number of clauses required to reject all the negative examples in E-,  while 
accepting all the positive examples in E +. 

Theorem 4: 
Suppose that E + and E-  are the sets of the positive and negative examples, respectively. Then, the 

following relation is true: r >_ k(G) >_ w(G). 

Proof: 
Denote as {CI, C2, C3 ..... Cr} a minimum set of r clauses which reject all the examples in E-. By 

Theorem 3, the negative examples rejected by clause Ci (1 <_ i < r), form a clique in the graph G and, 
by construction, each negative example is associated with at least one of these cliques. Hence, the 
cliques generated by the set {Ci, C2, Ca ..... Cr} form a clique cover for G. Therefore, r >_ k(G). It is 
well known (see, for instance, Golumbic [25]) that k(G) >_ wO. Hence, r > k(G) >_ w(O). [] 

At this point it should be stated that according to this theorem the gap between r and k(G) can be 
positive. The same is also true with the gap between k(G) and w(0). Therefore, there is a potential 
for the gap between r and w(0) to be large (since the value of w(0) can be arbitrarily large, see for 
instance [26]). Results from some related computational experiments seem to indicate that when the 
value of w(0) is large, then the bound is rather tight (see also Tables 3 and 4). More on this is 
discussed later in Section 8. 

Although finding k(G) is NP-complete, the determination of w((~) is also NP-complete, but there 
are more efficient enumerative algorithms. In Carraghan and Pardalos [27] a survey of algorithms 
which can find the maximum clique in any graph is presented. They also present a very efficient 
algorithm which uses a partial enumeration approach which outperforms any other known 
algorithm. In that treatment random problems with 3000 vertices and over one million edges 
were solved in rather short times (less than 1 h on an IBM ES/3090-600S computer). Some other 
related developments regarding the maximum clique of a graph can be found in [28-33]. 

6. PROBLEM DECOMPOSITION 

The rejectability graph provides a framework for decomposing the determination of a lower 
bound for the number of clauses into a set of smaller problems. The decomposition is obtained 
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through a partitioning of the rejectability graph. We consider two processes: 

• Decomposition via Connected Components, and 
• Decomposition via the Construction of a Clique Cover. 

Connected components 

In this case, one inspects the rejectability graph for a natural decomposition. A connected 
component of a graph is a maximal subgraph in which there is a path of edges between any pair 
of vertices. Hence, the vertices of the connected components are mutually exclusive and their union 
is exhaustive. The following corollary is derived from Theorem 3 and illustrates the relation of the 
connected components of G and the clauses which can be inferred from two collections of positive 
and negative examples. 

Corollary 3.1: 
Suppose that E ÷ and E-  are the sets of the positive and negative examples, respectively. Then, 

any subset of negative examples in E- which is rejected by a single CNF clause, subject to the 
examples in E +, corresponds to a subset of vertices of the rejectability graph G which belong to the 
same connected component of the graph G. 

Proofi 
This is obvious since Theorem 3 implies that the above subset of vertices forms a clique in the 

graph G and a clique has to belong to the same connected component of G. [] 

Pardalos and Rentala in [34] present an excellent survey of algorithms which determine the 
connected components of a graph. Furthermore, they also propose a parallel algorithm which runs 
on an IBM ES/3090-400E computer (with four processors). That algorithm determines the 
connected components in super linear time. 

The importance of Corollary 3.1 emerges when the sets of positive and negative examples are very 
large. First, one constructs the rejectability graph G. Next, one determines all the connected 
components of the rejectability graph by applying an algorithm (such as the one described in 
Pardalos and Rentala [34]) for finding the connected components. Then, one solves the smaller 
clause inference problems which are formed by considering all the positive examples and the negative 
examples which correspond to the vertices of the individual and distinct connected components in G. 

In other words, if a graph has two or more connected components, then one can decompose the 
original problem into separate problems and the aggregation of the optimal solutions (minimum 
number of CNF clauses) of the separate problems is an optimal solution for the original problem. 
Observe that each such sub-problem (in the CNF case) is comprised of the negative examples for 
that component and a//the positive examples, i.e. the positive examples are identical for each sub- 
problem. 

Clique cover 

The second approach is also motivated by partitioning the vertices of the rejectability graph into 
mutually disjoint sets. However, in this second approach, vertices are subdivided via a sequential 
construction of cliques. 

First, the maximum clique of the rejectability graph is determined. The negative examples which 
correspond to the vertices of the maximum clique, along with all the positive examples, form the first 
sub-problem of this decomposition. Next, the maximum clique of the remaining graph is derived. 
The second sub-problem is formed by the negative examples which correspond to the vertices of the 
second clique and aU the positive examples. This process continues until all the negative examples 
(or, equivalently, all the vertices in the rejectability graph) are considered. 

We note that this sequence of cliques does not necessarily correspond to a minimum clique cover 
of the rejectability graph. This procedure is simply a greedy approach which approximates a 
minimum clique cover. Furthermore, it is possible that a single sub-problem (in which all the 
vertices in the rejectability graph form a clique) may yield more than one clause. 

It should be noted at this point that the clique cover derived by using the above greedy approach 
may not always yield a minimum clique cover. Therefore, the number of cliques derived in that way, 
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cannot be used as a lower bound on the number of clauses derivable from positive and negative 
examples. Obviously, if the number of  cliques is equal to ~v(G), then the previous clique cover is 
minimal. However, even if the previous clique cover is not of  minimum size, it can still be very useful 
as it can lead to a decomposition of the original problem into a sequence of  smaller problems. Some 
computational results described in Section 8, provide some insight into the effectiveness of  such a 
decomposition approach. 

The two problem decomposition approaches described in this section can be combined into one 
approach as follows. One first decomposes the original problem in terms of its connected 
components. Next, a clique cover, as described above, is derived for the individual problems 
which correspond to the connected components of  the rejectability graph. This approach is further 
illustrated in the example presented in the following section. 

7. AN EXAMPLE OF U S I N G  THE R E J E C T A B I L I T Y  G R A P H  

Consider the following sets of  positive and negative examples: 

E + 

"0 1 0 0 0 1 0 1 1 1 

0 1 1 1 1 1 0 0 0 0 

0 0 1 0 1 1 1 0 1 0 

0 1 0 0 1 1 0 1 1 0 

1 0 1 0 0 0 1 0 1 1 

1 1 1 0 0 0 0 0 1 1 

1 1 0 0 0 0 0 1 1 1 

1 0 0 1 0 0 1 1 0 1 

0 1 1 0 1 1 0 0 1 0 

0 0 1 1 0 1 1 0 0 1 

1 1 1 1 0 0 0 0 0 1 

1 0 1 0 1 0 1 0 1 0 

1 1 1 0 1 0 0 0 1 0 

"1 0 0 1 1 0 1 1 0 0 

0 0 0 1 1 1 1 1 0 0 

1 0 1 1 0 0 1 0 0 1 

0 0 0 0 1 1 1 1 1 0 

1 1 0 1 1 0 0 1 0 0 

1 1 0 0 1 0 0 1 1 0 

0 0 0 0 0 1 1 1 1 1 

One method to actually construct a set of  clauses which accept all the positive examples while 
rejecting the negative ones is proposed in Triantaphyllou et al. [10] and Triantaphyllou [11]. That 
approach, denoted as the One Clause At a Time (or OCAT) method, is a greedy approach and is 
briefly described in the appendix. An application of OCAT in this illustrative example yields the 
following CNF system of four clauses: 

(A 2 V A 3 V 35) A (31 V A 3 V 35) A (A 1 V A 2 V A 4 V A5) A (31 V A 2 V 33 V 34) , 

of course the question addressed in this paper is whether it is possible to derive another system with 
fewer clauses. 

To help answer the previous question, we apply Theorem 4 to this illustrative example. Since there 
are 13 positive and 7 negative examples, the construction of the rejectability graph requires 21 
simple rejectability examinations. When Theorem 2 is applied to this data, the rejectability graph 
shown in Fig. 3 is derived. For instance, there is an edge between vertices VI and V6 because the first 
and sixth negative examples can be rejected by a single disjunction without violating the constraints 
imposed by the positive examples in E + . A similar interpretation holds for the remaining edges in 
graph G. 

The rejectability graph in the current illustrative example has two connected components (see Fig. 
3). One component is comprised by the vertices V1, I:2, V4, Vs, Vr, I:7 and the second component has 
only the vertex V3. Therefore, the original problem can be partitioned into two independent clause 
inference sub-problems. 
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Fig. 3. The rejectability graph for E + and E - .  

© 

Both sub-problems have the same positive examples. The first sub-problem has the same negative 
examples as in E- except for the third negative example. The second problem has only the third 
negative example. The lower bound for the minimum number of CNF clauses required to 
appropriately classify the 20 examples is derived from the sum of the lower bounds for the two 
separate components. Since the rejectability graph of the second sub-problem contains only a single 
vertex, the size of the minimum clique cover is one. A minimum clique cover is also obvious for the 
first sub-problem, namely, the two sets { V~, /:5, V6} and { 1:2, V4, V7}. Hence, a minimum clique 
cover is two for the second sub-problem. Thus, an overall lower bound for the minimum number of 
CNF clauses required is three. Hence, it may well be possible that only three clauses are needed to 
appropriately classify all 20 examples. 

There is another clause inference approach which can be used to determine a minimum size set of 
clauses. This method, denoted as SAT (for satisfiability), has been proposed in Kamath et al. [12] 
(also briefly described in the Appendix). In this approach one first specifies an upper limit on the 
number of clauses to be considered, say k. That is, the value ofk  must bepre-assumed. Next a clause 
satisfiability (SAT) model is formed and solved using an interior point method developed by 
Karmakar and his associates [35]. If the clause satisfiability problem is satisfied, it is possible to 
correctly classify all the examples with k or fewer clauses. If this SAT problem is infeasible, then one 
must increase k until feasibility is reached. In this manner, the SAT approach yields a system with 
the minimum number of clauses. It is very important one to observe at this point that computa- 
tionally it is much harder to prove that a given SAT problem is infeasible than it is feasible. 
Therefore, trying to determine a minimum size Boolean function by using the SAT approach may be 
computationally too difficult. In this illustrative example, the SAT approach with k = 3, is feasible 
and returns the following 3 clauses: 

(AI VA2  v a 3 )  A (2~ v,42 v 2 3  v 2 4 )  A (2! v A 3  v 2 5 ) .  

However, when the value k= 2 is used, then the corresponding SAT formulation is infeasible. 
Therefore, this set of clauses is optimal in the sense of this paper. The last statement also follows 
from Theorem 4 since there exists a clique cover of 3 and a set of clauses has been derived with 
exactly this number of members. 

8. S O M E  C O M P U T A T I O N A L  R E S U L T S  

In this section we provide some computational insight into two issues. The first is the role and 
usefulness of the lower bound of Theorem 4. The second issue is on the potential benefit of using the 
decomposition approach which is based on a clique cover. The first issue is important when one is 
interested in minimizing the size of the inferred Boolean function. The lower limit described in 
Theorem 4 (i.e. the value ofw(t~)) can also give an idea of how far from optimality a given solution 
might be. The second issue is important when one wishes to control the CPU time requirement (for 
instance, when solving large problems). Although the clique decomposition approach results in 
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Table I. Description of the systems used as "hidden logic" in the computer experiments. 

System ID System Description System ID System Description 

8A (`44 V -47) A (~3 V -44) 16D (45 V 48 V 410 V -416)A 
A (/It v A2 v 46) (42 v 4~2 v 4~6) A 

(4, v J,2) ̂  
(-43 V 45 V ,46) 

8B (At V A 4 V A6) A (A2) 16E (A 1 V 42 V A_3 V 44)A 
A (42 V `48) (`45 V A 6 V A 7 V `48)A 

(A 2 V ,4t0 V "4U V 412 ) A 
(-41~ V ,414 V AI5 V `416) 

8C (As) A (A 6 V 48) 32A (At V AI2)A 
A (AT) (A 2 V A5 V -432) A 

(-419 V A23 V `426) 

8D (46) A (.4_2) A 32B (`41 V -42 V A 9 V 412 V -431) A 
(.43 V `47) (a19 V_ 423 V -426)A 

(A2 V A5 v ,,i20 v A32 ) 

8E (As) A_(A2 V -45) A 32C (A 2 V A9 V "412 V A3t)A 
(`43 V -45) (A 2 V 420 V -432) A 

(-41 V A 2 V At9 V .'123 V A26 ) 

16A (`4t v 412 ) A (-42 V As V /]5) 32D 
A (-49) A (h7) 

16B (As VAr.,_vAiL) A (A3 V 32E 
All) A (A 2 V -41o V AI6 ) 

A (A I V A2) 

16C (.44 V 1~ 7 V A I l )  A_(A 4 V AI0 
V-414 ) A (a_9 V -414 V AI5 ) 

A (-43 v As) 

(.'t 4 V Atl V "422)A 
(A2 v Al2 V AI5 V ,429)A 

(43 V A 9 V A20 ) A 
(410 V All V 429 V A32 ) 

(A9 V At0 V A23 ) A 
(A 2 V A29 V 431 ) A 

(,42 V 44 V A6 V 47 V AI9 V "432) 

solving a sequence of smaller Boolean inference problems, there is a new time burden because one 
now also needs to determine a sequence of maximum cliques. Therefore, it is not immediately 
obvious that the decomposition approach will be less demanding in CPU time. A second issue is the 
size of the systems derived via the clique decomposition. The systems derived via the decomposition 
approach may be larger in size than otherwise. For these reasons, three series of test problems were 
performed. 

The first series of test problems is based on the 15 systems given by Kamath et al. [12]. These 
systems use sets of clauses defined on 8, 16, and 32 atoms and are depicted in Table 1. The 5 systems 
with 8 atoms are labelled as 8A1, 8A2, 8A3, 8A4, and 8A5 in Table 2 (the secondary classification is 
based on the number of examples used as input). The same convention was also used for the rest of 
the systems in Table 1. Each of the 15 sets are used as a "hidden logic" for classifying randomly 
generated examples, i.e. the sets E + and E-. Then, the OCAT algorithm is used to generate a set of 
CNF clauses which correctly classify each of the positive and negative examples. 

As described earlier, the rejectability graph and the sequential (greedy) generation of maximum 
cliques are determined. Next, Theorem 4 is used to establish a lower bound on the required number 
of inferred clauses. Note that the SAT results were determined by using a VAX 8709 machine 
running the 10th edition of UNIX, written in FORTRAN (the SAT results were originally reported 
in Kamath et al. [12] and were not repeated during this investigation). The OCAT results were 
derived using an IBM/3090-600S machine (which is approximately 3 to 4 times faster than a VAX 
8700 machine) and the code was written in FORTRAN. 

The results of these experiments are provided in Table 2. These results include computations from 
SAT, OCAT and the lower bound, as determined according to Theorem 4. Please note that in these 
tests we did not decompose the problems by using the connected component approach described in 
Section 6 (no code was available to us at the time). The SAT results represent a feasible solution, not 
necessarily a solution with the minimum number of clauses. (To obtain the minimum number of 
clauses, one must iteratively reduce the value of k until infeasibility occurs, which is a very time 
consuming process.) Consider, for instance, the first case (problem 8A1) depicted in Table 2. Ten 
random examples were generated for system 8A (as defined in Table 1). With k fixed at 3 the SAT 
algorithm returned a feasible solution with 3 clauses. The lower bound from Theorem 4 is equal to 2. 
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Table 2. Solution statistics 
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Problem Characteristics SAT solution OCAT ~ G  bar): 
solution lower bound 

via 
Problem No. of Clauses in k Number of Number of Theorem 4 
ID examples "hidden logic" value clauses clauses 

8AI 10 3 3 3 3 2 
8A2 25 3 6 3 3 2 
8A3 50 3 6 3 3 3 
8A4 100 3 6 3 3 3 

8BI 50 3 3 2 2 2 
8B2 100 3 6 3 3 3 
8B3 150 3 10 3 3 3 
8B4 200 3 6 3 3 3 

8C1 50 3 10 2 2 2 
8C2 100 3 10 3 3 3 

8D1 50 3 10 3 3 3 
8D2 100 3 10 3 3 3 

8El 50 3 10 3 3 3 
8E2 100 3 10 3 3 3 

16A1 100 4 15 4 4 3 
16A2 300 4 6 4 4 4 

16B 1 200 4 8 5 4 4 
16B2 400 4 4 4 4 4 

16C1 100 4 20 5 4 4 
16C2 400 4 4 4 4 4 

16D1 200 4 10 4 4 4 
16D2 400 4 4 4 4 4 

16El 200 4 15 5 5 4 
16E2 400 4 4 4 4 4 

32A1 250 3 3 3 3 3 

32B1 50 3 3 3 2 1 
32B2 100 3 3 3 3 2 
32B3 250 3 3 3 3 2 
32B4 300 3 3 3 3 2 

32C 1 50 3 3 3 2 1 
32C2 100 3 3 3 2 l 
32C3 150 3 3 3 3 1 
32C4 1000 3 3 3 3 3 

32D1 50 4 4 4 3 1 
32D2 100 4 4 4 3 2 
32D3 400 4 4 4 4 2 

32E 1 50 3 3 2 2 1 
32E2 100 3 3 3 2 1 
32E3 200 3 3 3 3 2 
32FA 3O0 3 3 3 3 2 
32E5 400 3 3 3 3 2 

Hence, it may be possible to correctly classify the 10 examples with only 2 clauses. However, in these 
tests the value of k was not iteratively reduced to determine its minimum value. 

The results of the first set of tests indicate just how well OCAT performs. Of the 24 problems with 
16 or fewer atoms, OCAT generated a set of clauses exactly at the lower bound in 20 cases. In the 
other 4 cases, OCAT exceeded the lower bound by only 1 clause. For the 17 problems with 32 atoms, 
OCAT averaged about 1.23 more clauses than the lower bound. 

It is also noteworthy to observe that the performance of SAT, OCAT and the Theorem 4 lower 
bound are not dramatically affected by the number of examples. As expected, as the number of 
examples increases, the number of required clauses also increases. This is illustrated, for instance, by 
example 32E. The OCAT approach generated 2 clauses with 50 and 100 examples while 3 clauses 
were needed for 200, 300 and 400 examples. As more examples are generated, the set of inferred 
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Table 3. Solution statistics when N = 10 and the total number of examples is 400 

Problem With out decomposition With clique decomposition 

ID Mi M2 Ko Ki Timel A i K2 Limit No. of Time2 Time3 Time4 A2 
~(C~) cliques 

IA10 247 153 10 10 4.96 0.97 10 10 10 0.03 0.04 0.07 0.96 
2A10 258 142 10 9 2.09 0.98 9 9 9 0,03 0.03 0.06 0.98 
3AI0 198 202 10 l0 3.34 0.98 10 9 9 0.03 0.07 0.10 0.98 
4AI0 253 147 10 10 2.54 0.96 10 10 10 0.03 0.05 0.08 0.97 
5AI0 288 112 10 10 5.06 0.97 11 10 11 0.04 0.03 0.07 0,97 
Mean: 248.8 151.21 10.0 9.8 3.60 0.97 10.0 9.6 9.8 0.03 0.04 0.08 0.97 

IA20 193 207 20 14 14.00 0.96 18 14 15 0.05 0.25 0.30 0.95 
2A20 266 134 20 18 55.22 0.94 22 18 19 0.08 0.04 0.12 0,95 
3A20 329 71 20 12 44.7 60.95 16 12 14 0.07 0.01 0.08 0,94 
4A20 291 109 20 16 57.51 0.95 20 15 17 0.08 0.02 0.10 0,93 
5A20 133 267 20 13 4.29 0.97 16 13 14 0.03 200.60 200.60 0.97 
Mean: 242.4 157.6 20.0 14.6 35.16 0.95 18.4 14.4 15.8 0.06 40.18 40.24 0.95 

IA30 315 85 30 17 103.76 0.93 18 16 17 0.08 0.01 0.09 0.94 
2A30 326 74 30 21 376.06 0.93 24 20 22 0.11 0.01 0.12 0.93 
3A30 306 94 30 18 64.55 0.93 17 17 17 0.07 0.02 0.09 0.93 
4A30 287 113 30 17 38.29 0.93 21 16 18 0.09 0.03 0.12 0.92 
5A30 293 107 30 22 267.25 0.92 25 19 21 0.10 0.03 0.13 0.92 
Mean: 305.4 94.6 30.0 19.0 169.98 0.93 21.0 17.6 19.0 0.09 0.02 0.11 0.93 

1A40 317 83 40 26 316.21 0.89 24 20 22 0.11 0.01 0.12 0.90 
2A40 252 148 40 22 159.09 0.90 24 21 22 0.08 0.05 0.13 0.89 
3A40 286 114 40 20 129.13 0.91 26 19 21 0.10 0.04 0.14 0.92 
4A40 328 72 40 19 220.66 0.92 20 17 18 0.09 0.01 0.10 0.93 
5A40 271 129 40 22 139.31 0.90 27 20 24 0.11 0.06 0.17 0.90 
Mean: 290.8 109.2 40.0 21.8 192.87 0.90 24.2 19.4 21.4 0.10 0.03 0.13 0.91 

IA50 256 144 50 27 260.39 0.86 30 23 27 0.11 0.07 0.18 0.87 
2A50 265 135 50 25 159.03 0.88 28 21 24 0.11 0.07 0.18 0.87 
3A50 270 130 50 23 128.13 0.86 27 20 22 0.10 0.05 0.15 0.86 
4A50 285 115 50 26 356.04 0.88 26 21 25 0.10 0.04 0.14 0.88 
5A50 296 104 50 21 112.31 0.86 26 20 22 0.10 0.02 0.12 0.88 
Mean: 274.4 125.6 50.0 24.4 203.18 0.87 27.4 21.0 24.0 0.10 0.05 0.15 0.87 

clauses becomes a better approximation to the underlying "hidden logic", which for example 32E is 
comprised of 3 clauses. 

The second and third series of computational experiments were executed as follows. First, a 
random Boolean function with K0 clauses (in CNF form) was determined. In order to have a good 
balance of positive and negative examples, each atom in any clause was present with probability 15 
to 25%. Also, if atom/li was selected to be in a clause, then atom Ai was not allowed to be present 
and vice-versa. That was done in order to avoid constructing clauses which would accept all 
examples (i.e. to avoid tautologies). A system derived in this way, was considered as the "hidden 
logic" system in these experiments. The number of atoms was set to be equal to 10 and 30 (i.e. N =  10 
or 30). These systems are indexed by ID numbers, such as 1A10, 2A10 ..... 1B10, 2BI0 etc. and are 
available to interested readers from the first author of this paper. In the above coding scheme the 
first digit indicates the test number, "A" or "B" indicates whether, N, the number of atoms was 
equal to 10 or to 30, respectively, and the last two digits indicate the number of rules in the "hidden 
logic" (see also Table 3 and Table 4). 

Next, a collection of 400 or 600 examples (400 examples were considered when N =  10 and 600 
examples when N=  30) was randomly generated and classified according to the previous clauses. 
The computational results are presented in Table 3 and Table 4 (for N=  10 and N = 30, respectively). 
At first, the branch-and-bound (B & B) algorithm described in Triantaphyllou [11] was applied to 
the original problem consisted by MI positive and M2 negative examples. The CPU time (in seconds 
on an IBM 3090-600E computer) and the number of clauses derived this way are presented in 
columns "Time1" and "KI ". 

Since in these experiments the "hidden logic" is also known to us, the original system can be 
compared with the derived system by asking both systems to classify 10,000 randomly generated 
examples (this technique was also used in [12]). The corresponding accuracy rates are presented in 
column "A1". The next phase in these experiments was to apply the clique decomposition approach. 
The original problem with the MI and M2 examples was decomposed into a number of smaller 
problems according to the clique cover approach described at the end of Section 7. Note that the 
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Problem 

ID 

With out decomposition With clique decomposition 

Mj M2 K0 Ki Timel Ai K2 Limit No. of Time2 Time~ Time4 A2 
o~(d) cliques 

IBI0 520 80 10 8 16.02 0.97 14 3 4 117.21 5.22 122.43 0.93 
2BI0 485 115 10 9 20.68 0.96 19 3 5 41.38 17,960.00 18,001.00 0.89 
3BI0 563 37 10 7 28.07 0.96 10 2 3 35.11 0.01 35.12 0.94 
4BI0 554 46 10 6 5.15 0.99 10 3 3 3.70 0.12 3.82 0.97 
5BI0 589 11 10 4 10.97 0.98 5 2 2 6.24 0.00 6.24 0.98 
6BI0 570 30 10 5 9.64 0.98 7 2 3 1.59 0.00 1.59 0.95 
7BI0 546 54 10 6 78.10 0.97 9 2 3 2.46 0.02 2.48 0.95 
8BI0 563 37 10 6 39.84 0.97 9 2 3 17.84 0.02 17.86 0.95 
9B10 569 31 10 6 38.61 0.97 7 2 3 45.97 0.00 45.97 0.96 
10BI0 515 85 10 8 57.23 0.98 20 3 4 202.88 259.06 461.93 0.94 
Mean: 547.4 52.6 10.0 6.5 30.43 0.97 11.0 2.4 3.3 47.44 1822.45 1869.89 0.95 

1B30 586 14 30 5 22.95 0.97 6 2 
2B30 583 17 30 4 1.76 0.99 5 3 
3B30 533 67 30 10 383.66 0.96 17 3 
4B30 574 26 30 5 66.23 0.97 7 3 
5B30 559 41 30 10 1380.84 0.93 13 3 
6B30 499 101 30 9 538.02 0.93 14 3 
7B30 513 87 30 9 41.06 0.95 17 3 
8B30 537 63 30 12 1501.81 0.91 17 3 
9B30 553 47 30 11 1791.30 0.89 14 3 
10B30 551 49 30 11 10,714.65 0.91 16 3 
Mean: 548.8 51.2 30.0 8.6 1644.23 0.94 12.6 2.8 

IB50 586 14 50 4 1.57 0.97 4 2 
2B50 584 16 50 5 64.47 0.96 7 2 
3B50 575 25 50 5 13.49 0.97 8 2 
4B50 550 50 50 6 28.34 0.97 7 2 
5B50 503 97 50 13 1465.44 0.89 17 3 
6B50 512 88 50 13 2181.36 0.91 21 3 
7B50 489 111 50 19 7415.04 0.82 27 3 
8B50 501 99 50 15 5135.15 0.89 24 3 
9B50 496 104 50 18 11,735.38 0.88 27 3 
10B50 517 83 50 15 7987.36 0.87 23 3 
Mean: 531.3 68.7 50.0 11.3 3602.76 0.91 16.5 2.6 

2 10.44 0.00 10.44 0.97 
3 0.21 0.00 0.21 0.98 
4 546.33 5.89 552.22 0.92 
3 1.67 0.00 1.67 0.96 
4 97.77 0.07 97.85 0.93 
5 55.77 2375.00 2431.00 0.93 
4 62.71 3.90 66.61 0.91 
3 903.19 0.47 903.66 0.91 
3 417.47 0.09 417.56 0.92 
3 834.61 0.10 834.71 0.91 

3.4 293.01 238.55 531.57 0.93 

2 0.46 0.01 0.47 0.98 
2 20.99 0.01 21.00 0.96 
3 10.45 0.01 10.46 0.95 
3 7.65 0.02 7.67 0.97 
4 277.57 281.24 558.81 0.86 
4 804.24 550.02 1354.26 0.86 
4 2438.29 4410.85 6849.14 0.83 
5 411.08 286.33 697.41 0.87 
5 2422.45 1970.34 4392.79 0.80 
5 2594.78 125 .63  2720.41 0.82 

3.7 898.80 762.44 1661.24 0.89 

natural decomposition via the connected component approach was not used in these tests. We only 
used the decomposition approach imposed by the sequence of the maximum cliques (as described in 
Section 6 and Section 7. 

The number of cliques which was generated for this purpose is depicted under column "No. of 
Cliques". The value of ~((~) is depicted under column "Limit". The values under "'Time:" and 
"Time3"" present the CPU time required by the B & B algorithm (only) and the calculation of the 
cliques, respectively. The values under "Time4" (total CPU time when clique decomposition is used) 
are the sum of the values in columns "Time:" and "Time3". The number of clauses of the proposed 
systems are under column "Ke". Finally, the values under "'Ae" are the accuracy rates when the 
system proposed by the decomposition approach and the original system are compared. 

The computational experiments in Table 3 were performed for groups of random "hidden logics" 
with 10, 20, 30, 40 and 50 clauses. These results indicate that the limit provided by Theorem 4 (i.e. 
the values of a:(G) in column "Limit'9 is rather tight. For instance, when K0 = 40 then the average 
number of  clauses derived by using B & B without decomposition was equal to 21.8 vs 19.4 being the 
lower limit. That is, the B & B approach returned systems of very small or even probably of minimal 
size. 

A "hidden logic" was generated randomly with a predetermined number of CNF clauses, say K0. 
Suppose that two collections of positive and negative examples are generated such that all positive 
examples are accepted by the K0 clauses, while each negative example is rejected by at least one of the 
previous clauses. If r denotes the minimum number of CNF clauses which satisfy the requirements 
of  the previous collections of positive and negative examples, then from the previous consideration 
the following relation follows to be true: K0 > r. 

When one examines the sizes of the systems returned when the clique decomposition approach 
was used, it can be observed that most of the time the decomposition approach returned systems 
with at most 10% (on the average) more CNF clauses than without decomposition. However, this 
was done with a fraction of the CPU time when compared with no decomposition. 



796 Evangelos Triantaphyllou and Allen L. Soyster 

For instance, when K0 =40 then, then on the average, the decomposition approach returned 
systems with 24.2 clauses (vs systems with 21.8 clauses without decomposition) by consuming, on 
the average, 0.13 CPU seconds vs 192.87 CPU seconds without the clique decomposition. That is, in 
the above test problems one obtains a system with at most 10% more clauses, but in return, realizes 
a return of an almost 1500 times speedup on CPU time. 

The results in Table 4 are similar to those in Table 3. However, the lower bound (i.e. the value of 
w(G)) described in Theorem 4 is considerably less tight. This is seen by the size of the gap between 
the values in column "K1" (or "K2') and column "Limit". Also, now the CPU times are significantly 
much higher, since we are dealing with larger and more difficult problems. At the same time, the 
CPU times are more unpredictable. 

For instance, observe that when K0 = 10, then problem 2B10 took 17,960.00 CPU seconds for 
computing the required cliques. This time is obviously excessive when compared with the times in 
the rest of the problems in these experiments. The CPU times became more variable when the 
"hidden logics" had more clauses (which naturally resulted in harder problems). 

However, even now the results suggest that the proposed clique decomposition approach may 
significantly reduce the CPU requirements in solving large problems with only a moderate increase 
in the number of derived clauses. Finally, it is remarkable to observe that in terms of the accuracy 
rates the systems derived by using the decomposition approach are almost equally accurate as the 
systems derived without the clique decomposition (which are computed at higher CPU time 
requirements). 

From the above analyses and computational results it becomes evident that the rejectability graph 
provides at least two benefits: 

(i) When the value of w((~) is rather high, then the value of w(G) can serve as a tight lower 
limit of the minimum number of clauses derivable from positive and negative examples. Of 
course, the clique cover can still be used for decomposing a large inductive inference 
problem. 
(ii) When the value ofw(G) is low (and hence there be a large gap between w((~) and r), then 
the rejectability graph can still be useful in decomposing a large inductive inference problem 
because it may lead to a significant reduction of the CPU time. 

These decompositions are based on constructing a sequence of cliques. This operation depends on 
the algorithm used to determine the maximum clique in a graph. Present algorithms are rather 
efficient when the graph is scarce (as is the case with the rejectability graphs in the problems 
described in Table 3). In our computational experiments we used the clique algorithm described in 
[27]. This algorithm is considered to be very good for scarce graphs and it is often used as a 
benchmark in the literature. 

However, when the graphs become dense, then this clique algorithm becomes too slow. Very often 
(around 20-30% of the time) we had to abort tests running for the results in Table 4, because the 
clique construction phase of our program would take too long (more than 5 h on an IBM 3090-600E 
mainframe computer). We believe that other current algorithms may be more efficient for dense 
graphs (such as the clique algorithm described in [36] or the algorithms recently developed by Balas 
and his associates [32], [33]). One issue became profoundly apparent in this investigation: Future 
developments in determining a maximum clique in a graph, will directly benefit the efficient solution 
of large inference problems by employing the rejectability graph and the decomposition approaches 
described in this paper. 

9. C O N C L U D I N G  R E M A R K S  

The paramount importance of learning from examples, creates the demand of being able to 
process large collections of positive and negative examples. It also increases the pressure on creating 
Boolean expressions which have a small number of clauses. The rejectability graph, which was 
introduced and discussed in this paper, provides the means for establishing a lower bound on the 
number of CNF or DNF clauses which can be inferred from positive and negative examples. 

This graph also provides an effective way for partitioning the original data and, thus, solve large 
scale learning problems. Furthermore, the rejectability graph suggests a time efficient approach for 
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decomposing the original problem into a sequence of smaller problems and still infer a compact 
Boolean expression from the partial solutions of the smaller problems. 

The previous findings were discussed in terms of two learning algorithms. The first, is a greedy 
approach and is based on a branch-and-bound algorithm developed by Triantaphyllou et  al. [10] 
(for a new and much faster version of the branch-and-bound algorithm developed by see 
TriantaphyUou [11]). The second approach is based on formulating a satisfiability problem 
(Kamath et  al. [12] and then solving it by using an interior point method (Karmakar et  al. [35]). 
Finally, it is possible that the rejectability graph to have more interesting properties than the ones 
described in this paper. More research in this direction may reveal more connections between graph 
theory and the learning from examples problem. 
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APPENDIX 

The following two sub-sections briefly describe two clause inference algorithms. Both algorithms use collections of positive 
and negative examples as the input data. The first algorithm is based on a branch-and-bound approach and infers CNF 
clauses Triantaphyllou et aL [10]. The second algorithm infers DNF clauses and is based on formulating a clause satisfiability 
(SA T) problem Kamath et al. [12] and then solving this SAT by using an interior point method described in Karmakar et al. 
[35]. These approaches are also used in the illustrative example presented in Section 6. 

Besides the fact that the first algorithm infers CNF systems, while the second infers DNF systems, the two approaches have 
another major difference. The first approach attempts to minimize the number of disjunctions in the proposed CNF system. 
However, the second approach assumes a given number, say k, of conjunctions in the DNF system to be inferred and solves a 
SAT problem. If this SAT problem is infeasible, then the conclusion is that there is no DNF system which has k (or less) 
conjunctions and satisfies the requirements imposed by the examples. It should be emphasized here that it is not very critical 
whether an inference algorithm determines a CNF or DNF system (i.e. CNF or DNF Boolean function). By applying 
Theorem 1, either a CNF or DNF system can be derived by using any algorithm. 

The One Clause At a Time Approach 

In Triantaphyllou et al. [10] an algorithm which infers CNF systems from positive and negative examples is developed. In 
that approach, CNF clauses are generated in a way which attempts to minimize the number of CNF clauses that constitute the 
recommended CNF system. In this way, a compact CNF system can be derived. The strategy followed there is called the One 
Clause At a Time (or OCAT) approach. 

The OCAT approach is greedy in nature. It uses as input data two collections of positive and negative examples (denoted as 
E + and E-, respectively). It determines a set of CNF clauses which, when taken together, reject all the negative examples and 
accepts all the positive examples. The OCAT approach is sequential. In the first iteration it determines a single clause (i.e. a 
disjunction) which accepts all the positive examples in the E + set while it rejects as many negative examples in E-  as possible. 
This is the greedy aspect of the approach. In the second iteration it performs the same task using the original E + set but the 
revised E-  set has only those negative examples which have not been rejected by any clause (i.e. the first) so far. The iterations 
continue until a set of clauses is constructed which reject all the negative examples in the original E-  set. More on this 
approach can be found in Triantaphyllou et al. [10] and Triantaphyllou [11]. Figure 4 summarizes the iterative nature of the 
OCAT approach. 

The core of the OCAT approach is Step 2, in Figure 4. In Triantaphyllou et al. [10] a branch-and-bound based algorithm is 
presented which solves the problem posed in Step 2 efficiently. A more efficient branch-and-bound algorithm, along with 
other enhancements, is described in Triantaphyllou [11]. The OCAT approach returns the set of desired clauses (i.e. the 
CNF system) as set C. 

i = 0 ; C = ~; { initializations } 

D O  W H I L E  ( E -  ;~ ¢)  

S tep  1: i ,,- i + 1; { i indicates the i-th clause } 

S tep  2: Find a clause c~ which accepts all members  o f  E ÷ 

while  it rejects as many members  o f  E -  as possible; 

S tep  3: Let  E - ( c 0  be the set o f  members  o f  E -  which are rejected by ci; 

S tep  4: Let  C , - - C  U c~; 

S tep  5: Let  E -  ,,- E -  - E -  (c~); 

REPEAT; 
Fig. 4. The One Clause At a Time (OCAT) approach. 
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Clause Inference as a Satisfiability Problem 
Let M~ and 3'/2 be the numbers of  examples in the E + and E-  sets, respectively. In Kamath et al. [12] it is shown that given 

two collections of positive and negative examples (called the ON-set and OFF-set, respectively) then, a DNF system can be 
inferred to satisfy the requirements of these examples. This is achieved by formulating a satisfiability (SAT) problem and then 
using the interior point method developed in Karmakar  et aL [35] to solve it. This approach pre-assumes the value of  k; the 
number  of conjunctions in the D N F  system. The SAT problem uses the following Boolean variables (Kamath et al. [12]): 

I 0 i fAi is in the j  - th conjunction 
sji 

I, 1 ifA~ is not in the j  - th conjunction 

, { 01 if,4i is in the j  - th conjunction 

sji = if t l  i is not in the j  - th conjunction 

r s~i if A i = 1 in the positive example a c E + 
t~ 

Gji = I 
k sji if Ai 0 in the positive example a c E ÷ 

f 1 if the positive example a is accepted by the j  - th conjunction 
2a 
i = ~ [ 0, otherwise 

Then, the clauses of this SAT problem are as follows: 

sji v s~i, f o r / =  1 ..... n, and j =  1 ..... k, (1) 

( V  dJ i) V ( V  ~i) '  f o r j  = 1 ..... k, and r = 1 ..... M2, 
iEP, i~Pr 

(2) 

k 

V z;, f o r a  = 1 ..... MI, 
j=l 

(3) 

g~ V ~ ,  f o r i =  1,...,n, j = 1,...,k, a n d a  = 1 ..... MI, (4) 

where Pr is the set of  indices of A for which Ai = 1 in the negative example r e E-.  Similarly,/~r is the set of indices of A for 
which Ai = 0 in the negative example r e E-.  

Clauses of type (1) ensure that never both Ai and .4i will appear in any conjunction. Clauses of type (2) ensure that each 
negative example is rejected by all conjunctions. Clauses of type (3) ensure that each positive example is accepted by at least 
one conjunction. Finally, clauses of type (4) ensure that z~ ~ = 1 if and only if the positive example a is accepted by the j - th  
conjunction. In general, this SAT problem has k[n(M1 + 1) + Mz] + MI clauses, and k(2n + MO Boolean variables. A 
detailed example on this formulation can be found in Kamath et al. [12]. 


