
Intelligent Systems

Interactive Learning of Monotone Boolean Functions

BORIS KOVALERCHUK
EVANGELOS TRIANTAPHYLLOU
ANIRUDDHA S. DESHPANDE

Department of Industrial and Manufacturing Systems Engineering, 3128 CEBA Building,
Louisiana State Uniuersity,  Baton Rouge, Louisiana 70803-6409

and

EVGENII VITYAEV

Institute of Mathematics, Russian Academy of Science, Novosibirsk, 630090, Russia

Communicated by Subhash  Kak and George M. Georgiou

ABSTRACT

This paper presents some optimal interactive algorithms for some problems related
to learning of monotone Boolean functions. These algorithms are based on the
fundamental Hansel theorem. The advantage of the algorithms is that they are not
heuristics, as is often the case of many known algorithms for general Boolean functions,
but they are optimal in the sense of the Shannon function. This paper also formulates a
new problem for the joint restoration of two nested monotone Boolean functions fl and
f2. This formulation allows one to further decrease the dialogue with an expert and
restore nonmonotone functions of the form f2&lfl.  The effectiveness of the proposed
approaches is demonstrated by some illustrative computational experiments.

1. INTRODUCTION

An important problem in machine learning is the one which involves
the inference of a Boolean function from collections of positive and
negative examples. This is also called the logical analysis problem [13]  and
is a special case of inductive inference. This kind of knowledge extraction
is desirable when one is interested in deriving a set of rules which, in turn,
can be easily comprehended by a field expert. In many application do-

INFORMATION SCIENCES 94, 87-118 (1996)
0 Elsevier Science Inc.  1996
655 Avenue of the Americas, New York, NY 10010

0020-0255/96/$15.00
PII  SOO20-0255(96)00082-S



8 8 B. KOVALERCHUK ET AL.

mains, the end users do not have sophisticated computer and modelling
expertise. As a result, systems which are based on techniques such as
neural networks, statistics, or linear programming are not appealing to
them, not do these methods provide a plausible explanation of the underly-
ing decision-making process. On the other hand, a logical analysis ap-
proach, when it is applicable, can result in rules which are already known
to the end user (thus increasing his/her confidence in the method) or lead
to new discoveries. In other words, a logical analysis approach has the
distinct advantage of high comprehensibility when it is compared with
other methods and to the discovery of new explicit knowledge. This is an
important step on the way to scientific explanation of a studied phe-
nomenon, in comparison with a “black box” type of approach.

The most recent advances in distinguishing between elements of two
pattern sets can be classified into six distinct categories. These are a clause
satisfiability approach to inductive inference by Kamath et al. [18,  191;
some branch-and-bound approaches of generating a small set of logical
rules by Triantaphyllou et al. [34]  and Triantaphyllou [35]; some improved
polynomial time and NP-complete cases of Boolean function decomposi-
tion by Boros et al. [6]; linear programming approaches by Woldberg and
Mangasarian [40],  and Mangasarian et al. [27]; some knowledge;based
learning approaches combining symbolic and connectionist (neural net-
works) machine-based learning as proposed by Shavlik [33],  Fu [lo],  Gold-
man et al. (1994),  and Cohn et al. [7]; and finally, some nearest-neighbor
classification approaches by Hattoru and Torii  [17],  Kurita [26],  and
Kamgar-Parsi and Kanal [20].  From the above six categories, the first three
can be considered as logical analysis approaches, since they deal with
inference of Boolean functions.

The general approach of pure machine learning and inductive inference
includes the following two steps: (i)  obtaining in advance a sufficient
number of examples (vectors) for different classes of observations, and (ii)
formulation of the assumptions about the required mathematical structure
of the example population (see, for instance, [5,  42, 9, 391).  Human
interaction is used just when one obtains new examples and formulates the
assumptions.

The general problem of learning a Boolean function has many applica-
tions. Such applications can be found in the areas of medical diagnosis,
hardware diagnosis, astrophysics, and finance, among others, as is best
demonstrated by the plethora of databases in the Machine Learning
Repository in the University of California at Irvine [29].

However, traditional machine learning approaches have some difficul-
ties. In particular, the size of the hypothesis space is influential in deter-
mining the sample complexity of a learning algorithm, that is, the expected



INTERACTIVE LEARNING

number of examples needed to accurately approximate a target concept.
The presence of bias in the selection of a hypothesis from the hypothesis
space can be beneficial in reducing the sample complexity of a learning
algorithm [28,  30, 111.  Usually the amount of bias in the hypothesis space
H is measured in terms of the Vapnik-Cheruonenkis  dimension, denoted as
I/C&m(H)  [37,  151.  Theoretical results regarding the VCdim(  H) are well
known [37].  The results in [37]  are still better than some other bounds
given in [4].  However, all these bounds are still overestimates [16].

The learning problem examined in this paper is how one can infer a
Boolean function. We assume that initially some Boolean vectors (input
examples) are available. These vectors are defined in the space {O,l>‘,
where n is the number of binary attributes or atoms. Each such vector
represents either a positive or a negative example, depending on whether
it must be accepted or rejected by the target Boolean function. In an
interactive environment, we assume that the user starts with an initial set
(which may be empty) of positive and negative examples, and then he/she
asks an oracle for membership classification of new examples which are
selected according to some interactive guided learning strategy [32,  11.  In
[36],  there is a discussion of this issue, and a guided learning strategy for
general Boolean functions is presented and analyzed.

The main challenge in inferring a target Boolean function from positive
and negative examples is that the user can never be absolutely certam
about the correctness of the inferred function, unless he/she has used the
entire set of all possible examples, which is of size 2”. Apparently, even for
a small value of n, this task may be practically impossible to realize.

Fortunately, many real-life applications are governed by the behavior oi
a monotone system or can be described by a combination of a smaL
number of monotone systems. Roughly speaking, monotonicity for the one-
dimensional case means that the value of the output increases or decreases
when the value of the input increases. A formal definition of this concep:
for the multidimensional case is provided in the next section. This %
common, for example, in many medical applications, where, for instancE.
the severity of a condition directly depends on the magnitude of the blood
pressure and body temperature within certain intervals.

In machine learning, monotonic&y  offers some unique computatioti
advantages [38,  21.  By knowing the class of certain examples, one can easi:
infer the class membership of more examples. This, in turn, can si&-
cantly  expedite the learning process.

This paper is organized as follows. Section 2 provides some bar
definitions and results about monotone Boolean functions. Sectior  :
presents some key research problems with highlights of some possi‘r\;f
solution approaches. Section 4 describes some procedures for infer+&



9 0 B. KOVALERCHUK ET AL.

monotone Boolean functions. Sections 5 and 6 illustrate the previous
procedures in terms of an application. Finally, the paper ends with some
concluding remarks and suggestions for possible extensions.

2. SOME BASIC DEFINITIONS AND RESULTS ABOUT
MONOTONE BOOLEAN FUNCTIONS

Let E, denote the set of all binary vectors of length n. Let x and y be
two such vectors. Then, the vector x=(x1,  x2, x3,. . . , xn) precedes the
vector  y=(yl,y2,y3, . . . , y,) (denoted as x zy) if and only if the following
is true: xi <yi, for all 1 <i  in. If, at the same time, x #y, then it is said
that x sttictly  precedes y (denoted as x <y).  The two binary vectors x and
y are said to be comparable if one of the relationships x sy or x ky holds.

A Boolean function f(x) is monotone if, for any vectors x, y E E,, the
relation f(x) <f(y) follows from the fact that x my. Let 44, be the set of
all monotone Boolean functions defined on n variables. A binary vector x
of length n is said to be an upper zero of a function f(x) EM,, if f(x) = 0
and for any vector y such that x +y, we have f(y) = 1. Also, we shall call
the number of unities (i.e., the number of the “1” elements) in vector x as
its level and denote this by U(x).  An upper zero x of a function f is said
to be the maximal upper zero if we have U(y) I U(x) for any upper zero y
of the function f (e.g., [23]).  In an analogous manner, we can define the
concepts of lower unit and minimal lower unit. A binary vector x of length
n is said to be a lower unit of a function f(x) EM,, if f(x) = 1 and, for any
vector y from E, such that y 4x, we get f(y)= 0. A lower unit of a
function f is said to be the minimal lower unit if we have U(x) 5 U(y) for
any lower unit y of the function f.

Examples of monotone Boolean functions are the constants 0 and 1, the
identity function f(x) =x,  the disjunction (xi VX,),  the conjunction (x1 A

x2), etc. Any function obtained by a composition of monotone Boolean
functions is itself monotone. In other words, the class of all monotone
Boolean functions is closed. Moreover, the class of all monotone Boolean
functions is one of the five maximal (precomplete)  classes in the set of all
Boolean functions. That is, there is no closed class of Boolean functions,
containing all monotone Boolean functions and distinct from the class of
monotone functions and the class of all Boolean functions. The reduced
disjunctive nom2al  form (DNF) of any monotone Boolean function, distinct
of 0 and 1, does not contain negations of variables. The set of functions
K4  L(x, vx,),(x,  Q>> is a complete system (and moreover, a basis) in the
class of all monotone Boolean functions [3].



INTERACTIVE LEARNING 9 1

For the number e(n)  of monotone Boolean jknctions  depending on n
variables, it is known that

q(n)  =2
( 1& (1+ e(n))

7

where 0 < E(n) < c(log  n>/n and c is a constant (see, for instance, [21,  31).
Let a monotone Boolean function f be defined with the help of a certain
operator A, (also called an oracle) which, when fed with a vector x =
( X~T~~YX~T.--T x,), returns the value of f(x).  Let 9=  {F) be the set of all
algorithms which can solve the above problem, and cp(F,f)  be the number
of accesses to the operator Af required to solve a given problem about
inferring a monotone function f EM,.

Next, we introduce the Shannon function q&n>  as follows [22]:

The problem examined next is that of finding all maximal upper zeros
(lower units) of an arbitrary function f=M,  with the help of a certain
number of accesses to the operator A,. It is shown in [14]  that in the case
of this problem, the following relation is true (known as Hansel’s theorem):

(2.2)

Here 1 n/2] is the closest integer number to n/2 which is no greater than
n/2. In terms of machine learning, the set of all maximal upper zeros
represents the border elements of the negative pattern. In an analogous
manner, the set of all minimal lower units represents the border of a
positive pattern. In this way, a monotone Boolean function represents two
compact patterns.

Restoration algorithms for monotone Boolean functions which use
Hansel’s theorem are optimal in terms of the Shannon function. That is,
they minimize the maximum time requirements of any possible restoration
algorithm. It is interesting to note at this point that, to the best of our
knowledge, Hansel’s theorem has not been translated into English, al-
though there are numerous references of it in the non-English literature



B. KOVALERCHUK ET AL,.

(Hansel wrote his paper in French). This theorem is one of the final results
of the long-term efforts in monotone Boolean functions beginning from
Dedekind [8]  in 1897.

One approach to using monotonicity in combination with existing pat-
tern recognition/classification approaches is to consider each one of the
available examples and apply the concept of monotonicity to generate
many more data. However, such an approach would have to explicitly
consider a potentially huge set of input observations. On the other hand,
these classification approaches are mostly NP-complete and very CPU
time-consuming. Thus, such an approach would be inefficient.

In [12], an approach for restoring a single monotone Boolean function is
presented in connection with a pattern recognition/classification problem.
That approach implicitly considers all derivable data from a single observa-
tion by utilizing Hansel chains of data [14].  That algorithm is optimal in
the sense of the Shannon function. However, although this result has also
been known in the non-English literature (it was originally published in
Russian), to the best of our knowledge it has not yet been described in the
English literature.

We will c,all  a montone Boolean function an increasing (isotone)  mono-
tone Boolean function in contrast with a decreasing monotone Boolean
function. A Boolean function is decreasing (antitone) monotone if, for any
vectors x, y E E,, the relation f(x)  <f(y)  follows from the fact that x k-y
[31,  p. 1491.

Each general discrimination (i.e., a general Boolean function) can be
described in terms of several increasing gi(x,,  . . . ,x,> and decreasing
hi(x 1,.  . . , xn>  monotone Boolean functions [24]. That is, the following is
always true:

4Cx) = V (gjCx>  Ahj(x))a
j=l

P-3)

Next, let us consider the case in which q(x) =g(x)  A h(x). Here, q+  =
g+ n h+,  where q+= {x: q(x) = l}, g+=  {x: g(x) = l}, and h+=  {x: h(x) = 1).
Therefore, one can obtain the set of all positive examples for q as the
intersection of the sets of all positive examples for the monotone functions
g and h.

For a general function q(x), represented as in (2.3),  the union of all
these intersections gives the full set of positive examples: q+  = U 4,: =
U<g,i  n h,?).  Often, we do not need so many separate monotone functrons.
The union of all conjunctions which do not include negations Xi forms a
single increasing monotone Boolean function (see, for instance, [41,  31).



INTERACTIVE LEARNING 9 3

3. SOME KEY PROBLEMS AND ALGORITHMS

In this section we present some key problems and the main steps of
algorithms for solving them.

PROBLEM 1. Inference of a monotone function with no initial data.

Conditions. There are no initial examples to initiate learning. All exam-
ples should be obtained as a result of the interaction of the designer with
an “oracle” (i.e., an operator Ar). It is also required that the discriminant
function should be a monotone Boolean function. This problem is equiva-
lent to the requirement that we consider only two compact monotone
patterns. These conditions are natural in many applications. Such applica-
tions include the estimation of reliability (see also the illustrative examples
next in this section for Problem 2).

ALGORITHM Al:
Step I: The user is asked to confirm function monotonicity.
Step 2: Apply an iterative algorithm for generating examples and construc-

tion of the DNF representation. Do so by using Hansel’s lemma (to
be described in Section 4; see also [14,  121).  This algorithm is
optimal according to relations (2.1) and (2.2).

PROBLEM 2. The nested classification problem.

Conditions. When we have one classification problem, we should learn
to classify an arbitrary vector as a result of the interaction of the designer
with an “oracle” (i.e., an operator Ar>.  Now we assume that we have two
classification problems, i.e., we need to restore two Boolean functions fi
and f2,  to discriminate classes. We want to solve these classification
problems simultaneously, by interacting with two oracles Af,  and A,,. We
also assume that these two problems are nested, i.e., all positive cases for
fi are also positive cases for f2. That is, for all (Y  E E,, the following
relation is always true: f,< a) rf2(  cu).  We also accompany this assumption
with the requirement of monotonicity of fl and f2.

This situation is more complex than the one for Problem 1. However,
the use of additional information from both problems allows for the
potential to accelerate the rate of learning.

Some Examples of Nested Problems
First illustrative example: The engineering reliability problem For illustra-

tive purposes, consider the problem of classifying the states of some system
by a reliability related expert. This expert is assumed to have worked with



94 B. KOVALERCHUK ET AL.

this particular system for a long term and thus can serve as an “oracle”
(i.e., the operator Ar). States of the system are represented by binary
vectors from E, (binary space defined on rz O-l attributes or characteris-
tics). The “oracle” is assumed that can answer questions such as: “1s
reliability of a given state guaranteed?” (Yes/No) or: “Is an accident for a
given state guaranteed?” (Yes/No). In accordance with these questions, we
pose two interrelated nested classification tasks. The first one is for
answering the first question, while the second task is for answering the
second question. Next, we define the four possible patterns which are
possible in this situation.
Task 1.

Pattern 1.1 “States of the system with some possibility for normal opera-
tion” (denoted as Eft).

Pattern 1.2: “States of the system which guarantee an accident” (de-
noted as E,).

Task 2.
Pattern 2.1: “Guaranteed reliable states of the system” (denoted as Ez).
Pattern 2.2: “Reliability of the states of the system is not guaranteed”

(denoted as E;).
Our goal is to extract the way the system operates in the form of two

discriminant Boolean functions f2 and fi. The first function is related to
task 1, while the second function is related to task 2 (as defined above).
Also observe that the following relations must be true: EC IEZ and
f,<  a) 2 f,< cu) for all (Y  E E,, describing the system state, where f,(a) and
f,<cx)  are the discriminant monotone Boolean functions for the first and
second task, respectively.

Second illustrative example: Breast cancer diagnosis For the second
illustrative example, consider the following nested classification problem
related to breast cancer diagnosis. The first subproblem is related to the
clinical question of whether a biopsy or short-term follow-up is necessary
or not. The second subproblem is related to the question of whether the
radiologist believes that the current case is highly suspicious for malig-
nancy or not. It is assumed that if the radiologist believes that the case is
malignant, then he/she will also definitely recommend a biopsy. More
formally, these two subproblems are defined as follows:
The Clinical Management Subproblem: One and only one of the following
two disjoint outcomes is possible:

1) “Biopsy/short-term follow-up is necessary,” or:
2) “Biopsy/short-term follow-up is not necessary.”



INTERACTIVE LEARNING

The Diagnosis Subproblem: Similarly as above, one and only one of the
following two disjoint outcomes is possible. That is, a given case is:

1) “Highly suspicious for malignancy,” or:
2) “Not highly suspicious for malignancy.”

It can be easily seen that the corresponding states satisfy nesting condi-
tions similar to the ones in the first illustrative example.

Third illustrative example: Radioacttiity  contamination detection The
third illustrative example is also diagnosis related. The issue now is how to
perform radioactivity contamination tests. Usually, the more time demand-
ing a test is, the more accurate the result will be. Therefore, an efficient
strategy would be to perform the less time demanding tests first, and if
need rises, to perform the more time demanding (and also more accurate)
tests later (this is analogous to the previous breast cancer problem, in
which case a biopsy can yield more accurate results but is also more
expensive). The corresponding two nested subproblems can be defined as
follows:
Subproblem 1: Diagnosis of radioactivity contamination, low-risk case.

Pattern 1: “ Necessatily  contaminated.”
Pattern 2: “Not necessarily contaminated.”

Subproblem 2: Very high risk for contamination:
Pattern 1: “Contaminated and extra detection of contamination is neces-

sary.”
Pattern 2: “Extra detection of contamination is not necessary.”

Again, it can be easily seen that the corresponding states satisfy the
nesting conditions of the first illustrative example. Next, the outline of an
algorithm for solving this kind of problems is presented.

ALGORITHMA~:
Step 1:  The user is asked to confirm the monotonicity for both tasks (i.e.,

the monotonicity of the functions underlying the patterns related
to the previous two tasks or subproblems). The user is also re-
quired to confirm that the two functions are nested (i.e., EC  ZEN
and fi(a)2f2(a)  for all cute,).

Step 2: If the user confirms that monotonicity should be present, then test
for the monotonicity property in the initial examples for both tasks.
Also, confirm that the available examples satisfy the “nesting”
requirement.



9 6 B. KOVALERCHUK ET AL.

If the user does not confirm monotonicity or the nesting require-
ment, then he must reformulate the problem characteristics (fea-
tures) to reach monotonicity.

If monotonicity is not reached, then do not solve the problem
with monotone Boolean functions and exit.

Step 3: Reject the examples which violate monotonicity. At this point, the
following sets of examples are available: ET, EC and E2+,  ET, and
E;t 2E; should hold.

Step 4: Use the algorithm in [12]  (which is also described in Section 4.2) to
create all Hansel chains for the number (denoted as n) of features
in the current application.

Step 5: Use the initial (i.e., already classified) examples and the mono-
tonicity  property to infer all derivable classification values on the
additional examples located in the above Hansel chains. For effec-
tive storage of the inferred examples, use the approach described
in [23].  These ideas use the property of Hansel chains, according to
which, at each iteration i, we need to store only two key examples
from each Hansel chain. These two examples represent a maximal
known upper zero and a minimal known lower unit for each
Hansel chain.

Step 6: Generate two new candidate examples, say ay!‘)  and ai2), to be
considered for classification by oracles Afl and A,,, resbectively.
These examples are taken from Hansel chains according to the
procedures described in Section 4.2. If no more examples are left,
exit; the two functions have been fully restored. Otherwise, go to
step 7.

Step 7: Given the above two examples cy/‘) and at2),  we send for classifica-
tion the one which leads to the maximum number of additional
examples to be classified (without new calls to the oracles) when
the properties of monotonicity and nested functions are applied.
How this is done is described in more detail next in steps 7.1 to 7.5.

Step 8: After either LY)‘) and af2) has been classified by the appropriate
oracle, use the monotonicity property to infer all derivable classifi-
cation values of the additional examples located in the remaining
Hansel chains. Go to step 6.

Next, we discuss step 7 in more detail. When step 7 is reached, there are
two candidate examples, denoted as ay!‘) and cuf2),  which are considered
for submission to the respective oracle. For the ‘simultaneous restoration
of fi and f2,  we need to send first for classification the example (c~i(i) or
c~yi(~))  which best accelerates the learning process. Apparently, there are two
possible alternatives: (i) first to ask oracle A,, about the value of f,(aj’)),



INTERACTIVE LEARNING 9 7

and (ii) first to ask the second oracle A,, about the value of f2(ai(‘)).
These alternatives allow one to guarantee for both of oracles and functions
fi and fi  the optimum limits on the number of calls in (2.2). We select
which example to submit first by computing two estimates Ni and N2 of
the numbers of examples that can be classified if example (pi or cut2)  is
classified first, respectively. Given the previous estimates, we decide which
example to submit first for classification according to the following simple
rules:

Rule 1: If Nr > N2,  then ask A,, about the f,(  cy!‘))  value.
Rule 2: If Nr < N2,  then ask A,, about the f2(  c~yi(~))  value.
Rule 3: If N, = N2,  then choose CX!‘) or ‘pi randomly.

Let us define Nr and N2 in more detail. Here, N, is an estimate of the
number of elements (Y  EE,  such that f,(a)  becomes known without
asking A,,, if we know the value of f,(  cy!‘)).  These f,< a) values are
inferred from the properties that, for all cz,  f2(  a) <f,(a),  and the mono-
tonicity  of fr and f2.  In a similar manner, we define N2  to estimate the
number of fr(  (r) values becoming known, if we know f2(czi2)).  Observe
that there are two possible values, 0 and 1, for fr(cr/‘)).  First, temporarily
assume that f,(  c$)) = 0. Then, we can compute Nf as the number of
vectors (Y  GE,  for which the value of f,< a) can be inferred without asking
A,,. Next, we assume that fr(  cy!‘))  = 1, and in a similar manner, we
compute the quantity Nrr.  When the previous two quantities are computed,
then the value of N, can be estimated as the sum of Nr”  and Nrr.  That is,
we use Nr = NT + Nrr.

In a similar manner, the quantities N:  and Ni can be defined, and
then N, can be estimated as their sum. That is, N2  = Nf + Ni. At this
point, please observe that the computation of the above numbers can be
simplified as follows. We can just compute the number of these elements
on the Hansel chains of the current and next length. For all other
elements, this extension is not needed. It will be done later when we come
to these elements. This follows from the proof of the Hansel theorem and
lemma [ 141.

Based on the above definitions and discussions, we propose to use the
following algorithm (described as steps 7.1 to 7.6) in order to decide which
example to choose.

Step 7.1: Compute (Nf)  by first assuming that fr(  a:‘)) = 0.
Step 7.2: Compute (N,‘) by first assuming that f,(  ‘Y/‘))  = 1.
Step 7.3: Compute (Nf)  by first assuming that f,( CX!~))  = 0.
Step 7.4: Compute (NJ ) by first assuming that f,( czj2))  = 1.
Step 7.5: Compute N1 and N, as the sum of the appropriate pair of the

previous quantities.



9 8 B. KOVALERCHUK ET AL.

Step 7.6: If N1 > N2,  then ask A,, about f,(  ‘pi).
If N, <N,, then ask Afz about f2(cr:2)).
If N, = N2,  then randomly submit c~yi(i)  or cyi(*) to the appro-
priate oracle.

Comment. In step 7, we realized a myopic algorithm, which can be
extended. Recall that we considered the possibilities of classification
values f,(  LY!‘))  and f,< q@)) at the next level (denoted as the ith level). One
may wish to extend this to the (i = 1) level and so on. In this way, the
estimates will be more accurate (this is similar to playing chess by consid-
ering two, three, or more moves in advance). However, although this
extension of Algorithm A2 may decrease the number of calls, naturally it
will lead to an increase in computation time. Therefore, we propose to use
the depth (i.e., the number of look-ahead levels) of this search as a
parameter which is application-dependent.

4. AN ALGORITHM FOR RESTORING A MONOTONE
BOOLEAN FUNCTION

4.1. GENERAL SCHEME OF THE ALGORITHM

Next, we present algorithm RESTORE for the interactive restoration of
a monotone Boolean function, and two procedures GENERATE and
EXPAND in a pseudoprogramming language.

ALGORITHM “RESTORE”
Input. Dimension n of the binary space and access to an oracle A,.
output. A monotone Boolean function restored after a minimal number

(according to Shannon criterion as it is given as relation (2.2) of
calls to the oracle A,.

Method.
1) Construction of Hansel chains (see Section 4.2)
2) Restoration of a monotone Boolean function starting from chains of

minimal length and finishing with chains of maximal length. This
ensures that the number of membership calls to the oracle A, is no
more than the limit presented in formula (2.2),  which guarantees the
number of calls to an oracle A, to be no more than the limit
presented in formula (2.1).

BEGIN;
Set i = 1; {initialization}
DO WHILE (function f(x)  is not entirely restored)

Step 1. Use procedure GENERATE to generate element (Yi;
Sten  2. Call oracle A, to retrieve the value of f( cu,);



INTERACTIVE LEARNING 9 9

Step 3. Use procedure EXPAND to deduce the values of other ele-
ments in Hansel chains (i.e., sequences of examples in E,) by
using the value of f( ai),  the structure of element LY~,  and the
monotonicity property.

Step 3. Set i+-i+ 1;
RETURN

END;

PROCEDURE “GENERATE”: Used to generate an element (Y~ to be
classified by the oracle A,.

Input. Dimension n of the binary space.
output. The next element cy, to send for classification by the oracle A,.
Method: Proceeding from minimal to maximal Hansel chains.

IF i = 1 THEN {where i is the index of the current element}
BEGIN

Step 1.1. Retrieve all Hansel chains of minimal length;
Step 1.2. Randomly choose the first chain C, among the chains

retrieved in step 1.1;
Step 1.3. Set the first element (Y* as the minimal element of

chain C,;
END

ELSE
BEGIN

Set k = 1 {where k is the index number of a Hansel chain};
DO WHILE (NOT all Hansel chains are tested)

Step 2.1. Find the largest element Cyi in chain C,,  which still
has no confirmed f(ayi) value;

Step 2.2. If step 2.1 did not return an element CY~,  then ran-
domly select the next Hansel chain C,,  i of the same
length as the one of the current chain C,;

Step 2.3. Find the least element CY.~ from chain C,,  1, which
still has no confirmed f(c~i)  value;

Step 2.4. If Step 2.3 did not return an element pi, then ran-
domly choose chain C,,  i of the next available length;

Step 2.5 Set k+k+  1;
RETURN

END

PROCEDURE “EXPAND”: Used to expand the f(~i) value for other ele-
ments using monotonicity and Hansel chains.

Input. The f(~i) value.
output. An extended set of elements with known f(x) values.
Method: The method is based on the properties: if x 2 (Yi and I = 1,

then f(x) = 1; and if x I czi and f( (-ui) = 0, then f(x) = 0.



1 0 0 B. KOVALERCHUK ET AL.

BEGIN
Step 1. Obtain x such that x 2 Qi or x 5 (Yi and x is in a chain of the

length 1 or I + 2.
Step 2. If f<~i) = 1, then VX (X  2 CY~)  set f(x)  = 1;

If f( cui)  = 0, then V’X (X 2 (Yi)  set f(x)  = 0;
Step 3. Store the f(x) values which were obtained in step 2;

END

Comment. To obtain x in step 1, we generate vectors {x} only from
Hansel chains of current and the next length. This follows from the Hansel
lemma [ 141.

4.2. CONSTRUCTION OF HANSEL  CHAINS

Several steps in the previous algorithms deal with Hansel chains. Next
we describe how to construct all Hansel chains for a given state space E,
of dimension n. First, we give a formal definition of a general chain.

A chain is a sequence of binary vectors (examples) cx  1, (Ye,  . . . , (Yi,
ai+lY***,  aq, such that (Yi+  1 is obtained from ai by changing.a  “0” element
to “1.” That is, there is an index k such that q k = 0, q+ I,k = 1, and for
any t # k the following is true: cqt = q + I,r.  For instance, the list
(01000,01100,01110)  of three vectors is a chain.

To construct all Hansel chains, we will use an iterative procedure as
follows: Let E, = (0,  l}”  be the n-dimensional binary cube. All chains for
E, are constructed from chains for E, _ i.  Therefore, we begin the con-
struction for E,, by starting with E, and iteratively proceeding to E,.

(i)  Chains for E,.

For E,, there is only a single (trivial) chain and it is (0, 1).

(ii) Chains for E2.

We take E, and add at the beginning of each one of its chains the
element (0). Thus, we obtain the set (00,Ol).  This set is called EFin.
Similarly, by adding “1” to E, = {(O),(l)}, we construct the set Eyx  =
(10, 11). To simplify notation, often we will omit “( )” for vectors as (10)



INTERACTIVE LEARNING 1 0 1

and (11). Both EFin  and Era’ are isomorphic to E,, because they have the
isomorphic chains (00,Ol) and (10,ll).  The union of ET”  and EFax  is
E,. That is, E,  =EFin  UE,“““. Observe that the chains (00,Ol) and (10,ll)
cover entirely E,; however, they are not Hansel chains. To obtain Hansel
chains, we need to modify them as follows.

Adjust the chain (00,Ol) by adding the maximum element (11) from the
chain (10,ll).  That is, obtain a new chain (OO,Ol,  11). Also  reject element
(11) from the chain (10,ll).  Hence, we obtain the two new chains
(00, 01,ll)  and (10). These chains are the Hansel chains 1141  for E,. That
is, E,={(00,01,11),(10)}.

(iii) Chains for E,.

The Hansel chains for E,  are constructed in a manner similar to the
chains for E,. First, we double and adjust the Hansel chains of E,  to
obtain EFin  and Erax. The following relations is also true:

E,  = EFin  u EFax,

where Ejmin  = {(000,001,011),  (010)) and EFax  = ((100,101, ill),  (110)).
We do the same chain modification as for E,. That is, first we choose two
isomorphic chains. At first, let it be two maximal-length chains
(000,001,011)  and (100,101,111).  We add the maximal element (111)
form (100,101,111)  to (000,001,011)  and drop it from (100,101,111).  In
this way, we obtain the two new chains (000,001,011,111>  and (100,101).
Next, we repeat this procedure for the rest of the isomorphic chains (010)
and (110). In this simple case, we will have just one new chain (010,110)
(note that the second chain will be empty). Therefore, E,  consists of the

,Oll,lll).  Thatthree Hansel chains (OlO,llO), (lOO,lOl), and (000,001,
is, the following is true:

E,  = { (010, llO),  (lOO,lOl),  (000,001,011,111

In a similar manner, one can construct the Hansel chains for E,, E,,
and so on. Below, we present a general scheme for E,  under the assump-
tion that we already have all Hansel chains for E,  _ 1.  Note that the Hansel
chains of E,- 1 can be obtained recursively from the Hansel chains of
E,,Ep...,E,-2.



1 0 2 B. KOVALERCHUK  ET AL.

(iv) Chains for E,.

Suppose that E,  _ ~ = {C,, . . . , Ci,.  . . ,C,}, where each Ci  is a Hansel
chain for E,- 1. First, we double E,-  r, and by using the “0” and “1”
elements as before, we construct the two isomorphic chains:

en = {oc,,oc,,...~ock),
and

EraX  = {lC,,lC, )...) X,}.

The sets Ezin  and EFaX  entirely cover E,. That is, the following is true:

E,  = EFin  u EnmaX.

Next, let us consider the chain Ci  = {ciI,.  . . ,cii.. . ,cimcij}  and the pair
of  the isomorphic Hansel  chains OCi  and 1Ci, in which OCi  =
{OCil,.  . . ) OCij,  . . . ) OC~~(~)}  and lCi = {lcil,..  ., 1Cij.. ., lcimcij}.  Note that in
the previous expressions, Ocij  and lcij are n-dimensional binary vectors,
while cij is an n - l-dimensional binary  vector. We construct a new pair of
Hansel chains OCiH = {Ocil,  . . . , Ocij, . . . , OCim(i),  lCim(i~}  and 1CH  =
{lCil,...,lCij,...,
{lCil,.. .) lCij,.  .‘)

lcirn(i)-  I>  from OCi  = {OCil,.  . .) OCij).  . . ) OCim(i~}  and 1Ci  =
lcimcij} by using the same “cut and add” procedure as was

the case for E,. We repeat this operation for all pairs of isomorphic chains
in Erin  and EfaX to obtain the entire set of Hansel chains for E,.

Next, in Figures 1 and 2, we illustrate this procedure of chain construc-
tion for E,  and E,. Figure 1 shows the transformation of E,  in EFx and
Ep, and after that, the construction of the new chains from them. The
nodes of a chain are connected with solid lines. At first we have an edge

o 1 ~ 1~ Ez-  1j-l 1~li

00 E?  01 00 01

Fig. 1. Construction of Hansel chains for E,.



INTERACTIVE LEARNING 1 0 3

000 cti 001 0 0 0 0 0 1

Fig. 2. Construction of Hansel chains for E,.

between (10) and (11). Next we cut it and obtain a new chain (OO,Ol,ll)
by combining (11) to the chain (00,Ol). The node (10) forms a trivial chain
with a single element. Figure 2 begins from two copies of the output chain
shown in Figure 1 with an added “0” to the first of them and a “1” to the
second one. The output in Figure 2 presents the chains in E,, which are
also connected with solid lines. These chains were obtained with the same
“cut and add” procedure.

The justification of the above construction of this section is the proof of
the Hansel lemma. This lemma uses the concepts of a complement ele-
ment, an interval, and a square. Three binary vectors al,  CQ, CQ (where
c~i  -<  CQ * LYE) form an interval [ cri,  a,], if there are no other vectors
between ( Q~,  (Ye)  and ((Ye, cy3). The vector p is a complement of cy2 in the
interval [ cyi, (~~1  if (pi < p + cz3.  In this case, we also say that the vectors czi,

cy3 and p form a square (see Fig, 3). An instance of a square is
Z:‘= (01000>, a!2 = (OllOO), cr3  = (OlllO),  and p = (01010). The Hansel
lemma is stated as follows.

LEMMA (Hansel, [14]).  The binary cube E, is covered by
l ilG2,

disjoint

chains which have the following properties:

(a)  The number of chains of length n - 2p + 1 is (;)-jpllj  (where

0 Sp  5 1 n/2]).
(b) The minimal element of any of the chains of length n - 2p + 1 is a

vector with p units (“1”) and n -p  zeros (“0”).
(c) For any three sequential elements cxI  < a2  4 a3  from a chain, the

complement to a2 in the interval [ CY~, CY,]  belongs to a chain of length
n-2p-1.



1 0 4 B. KOVALERCHUK ET AL.

01110
a3

a 2  0 1 1 0 0

al
01000

Fig. 3. A binary square.

5. A COMPUTATIONAL INTERACTIVE
HIERARCHICAL EXPERIMENT

5.1. PROBLEM DESCRIPTION

In this section, we demonstrate the previous issues in terms of an
illustrative example from the area of breast cancer diagnosis. It is assumed
that some preliminary medical tests have been performed (such as a
mammogram) and the medical doctor wishes to determine what to do next.
That is, should he/she proceed with a biopsy or not? The problem
considered in this section is a nested one because it is comprised of two
interrelated subproblems. The first problem is related to the question of
whether a biopsy is necessary. The second subproblem is related to the
question of whether the human expert (medical doctor) believes that the
current case represents a malignant case or not. It is assumed that if the
doctor believes that the case is malignant, then he/she will also definitely
recommend a biopsy. Recall that in Section 3 we defined these two
subproblems as follows:

The Clinical Management Subproblem: One and only one of the follow-
ing two disjoint outcomes is possible:

1)  “Biopsy/short-term follow-up is necessary,” or:
2) “Biopsy/short-term follow-up is not necessary.”



INTERACTIVE LEARNING 105

The Diagnosis Subproblem: Similarly as above, one and only one of the
following two disjoint outcomes is possible. That is, a given case is:

1) “Highly suspicious for malignancy,” or:
2) “Not highly suspicious for malignancy.”

The previous two interrelated subproblems can be formulated as the
restoration problem of two nested monotone Boolean functions. A medical
expert was explained the concept of monotonicity and he felt comfortable
with the idea of using monotone Boolean functions. Moreover, the dia-
logue which followed confirmed the validity of this assumption. The
underlying Boolean functions were defined on 11 binary atoms. This
simplification was done to illustrate the applicability of the proposed
methodology. More details on this problem can be found in [25].

From the above discussion, it follows that now we will work in the
ll-dimensional binary space (i.e., in E,,).  The two corresponding functions
a re  fi and fi. Function fi returns true (1) value if the decision is
“biopsy/short-term follow-up is necessary,” false (0) otherwise. Similarly,
function f2 returns true (1) value if the decision is “highly suspicious for
malignancy,” false (0) otherwise.

Full restoration of either one of the functions fj (for i = 1,2)  without
any optimization on the dialogue process would have required up to
2” = 2048 calls (membership inquires) to an expert (i.e., the A, operator
or medically oriented binary attributes). However, according to the Hansel
lemma (i.e., relation (2.2) and under the assumption of monotony, an
optimal (i.e., with a minimal number of accesses) dialogue for restoring a

monotone Boolean would require at most
(:1)+(161)

=2x462=924

calls to the oracle. Please observe that this new value is 2.36 times smaller
than the pervious upper limit of 2048 calls. However, even this upper limit
of 924 calls can be reduced further, as is explained in the next section.

5.2. HIERARCHICAL DECOMPOSITION

In this particular breast cancer diagnosis problem, the medical expert
indicated that the original 11 binary attributes can be organized in terms
of a hierarchy. This hierarchy follows from the definition of the 11
medically oriented binary attributes. Next, it will be shown that this
hierarchy can be exploited to reduce the required number of calls to the
“oracle” even further. We will not describe the medical justification of this
hierarchy here (more details can be found in [25]).  The hierarchy used in



1 0 6 B. KOVALERCHUK ET AL.

this example is given as follow:

Level 1 (5 attributes)

X1
X2

x3

x4

x5

c
t
t
t
t

Level 2 (all 11 attributes)

w],w2,w3

Yl7Y,~Y,~Y4~Y5

x3

x4

x5

In this hierarchy, the two attributes x1  and x2 correspond to two mono-
tone Boolean functions which also have to be restored. That is, the
following is true:

and

The expert indicated that these two functions v, and $ should be common
to both problems (i.e., the biopsy and cancer problems). Therefore, the
following relation is true regarding the fi (for i = 1,2)  and the two cp  and $
functions:

Given the above analysis and decomposition, then according to the
Hansel theorem (i.e., relation (2.2),  it follows that for the restoration

problem at level 1, it would have been required to have at most 5
( 1

2 +

5
( 12

= 20 calls to the “oracle.” Observe that without the exploitation of the

monotonicity property, an exhaustive dialogue requires 25  = 32 calls, which
is 1.6 times higher. Also, the exploitation of a hierarchy can even benefit
the restoration of general (i.e., not necessarily monotone) Boolean func-
tions.

The above bounds represent upper limits. When we actually interviewed
the medical expert, the target function fr was fully restored with only 13
membership inquires (calls). Therefore, the number of the actual calls was



INTERACTIVE LEARNING 1 0 7

1.5 times less than the upper limit given by Hansel’s theorem and 2.5 times
less than the exhaustive search (which would have required up to 32 calls).
Also, the same 13 calls were adequate to restore each of f2(x1,  x2, x3,  x4, x5)
and  x2 = $(y,,  y,,  y,,  y,,  ys) functions.

Next, x1 was restored as a function <p(w1,w2,w3).  In this case, the
exhaustive search would have required 23  = 8 calls. On the other hand,

1 2Hansel’s lemma provides an upper limit of 3 + 3 = 6 calls. This value
0  0

is 1.33 times less than what the exhaustive search would have required.
Although the previous numbers of calls are not excessively high, they still
provide a sense of the potential of significant savings which can be
achieved if monotonicity is established and utilized. The numbers in this
example are supposed only to be for illustrative purposes in clarifying the
proposed methodology.

In the following paragraphs, we present the optimal dialogue restoring
the cp(w,,  w2,  w3)  function. Recall from Section 4.2 that the Hansel chains
for  the three-dimensional  space E, a r e  ( ( 0 1 0 ,  lll),(lOO, lOl>,
(000,001,011,111)}.  The medical expert was asked to evaluate the value
of some of the above examples. Given the value of certain examples in
these chains and using the monotonicity property, we were able to induce
the values of more examples. The results are summarized below:

Chain 1 Chain 2 Chain 3

V e c t o r s (010, 110) (100, 101) (000, 001, 011, 111)
Value o f q 1* 1 o * 1* 0 o * 1 1

In the above illustration, “l*” and “O*”  indicate answers given directly
by the expert. For instance, during the dialogue, the expert decided that
(~(010)  = 1, &Ol) = 1, and <p(lOO)  = (~(001)  = 0. The values without an
asterisk (i.e., when we only have “1” or “0”) were obtained by utilizing the
monotonicity property.

In this experiment, the four calls about the function values for the
examples (OlO),  (loo),  (101), and (001) were sufficient to lead to full
restoration. Monotonicity allowed us to extend the previous four values to
infer the values of the rest of the examples. For instance, from the expert’s
testimony that (~(010)  = 1, it is derived that (~(110)  = 1, and from (~(001)  =
0, it is derived that ~(000)  = 0. Observe that these four calls to the expert



1 0 8 B. KOVALERCHUK ET AL.

are 2 times less than the maximum number of calls (i.e., 8) and 1.5 times
less than the guaranteed number of calls provided by Hansel’s theorem
(which is equal to 6).

In order to describe function cp(w,, w2, w3) in the standard disjunctive
normal form (DNF),  we should include from each one of the chains l-3
above their minimal upper units, i.e., (OlO),  (lOl),  and (011) presented as
W2,  WlW3,  W2W3, respectively. As a result, we obtained their DNF expres-
sion. This DNF, after simplification, is w2 V wIw3. That is, the following is
true:

In a similar manner, we can obtain Boolean expressions for x2 =
I,!J(Y,,  y,, y,,  y,, y,)  from the Hansel chains for E,:

X2=Ic,(Yl,Y2,Y37Y4,Y5)  =Y2’Yl  vY3y4y5m (5.4

Similarly for level 1, we obtained the target functions of x,,  x2,  x3,  x4,  xg
for the biopsy subproblem to be defined as follows:

f,(x) = x2x4  vx,x,  vx,x,  vx,  “,, (5.3)

and for the cancer subproblem to be defined as

f2(  X)  ‘XIX2  “X3 “X,X,  vx,x,  “X,X,  =X1X2  vX3  ’ (‘2 vx, vx4)x5’ (5*4)

The above expression allows one to compare the two functions fI and
f2.  Observe that fi(x> =A V (x2 Vx,)x, “.x5,  and f2(x)  =A V (x2  Vx, V

x4)x5,  where A =x1x2  VX,. Hence, these two functions differ only in the
parts (x2  VX,)X,  VX,  and (x2 VX,  vx,)X,, which may be important infor-
mation for additional medical analysis. Next we use expressions (5.1) and
(5.2) in (5.3) and (5.4) to define the explicit form fi and f2 as the proposed
final formulas for performing biopsy:

f&4  =X2X4 VX,X2  vXlX4  vx3 vx,

= (Y2 “Yl “Y3Y4YdX4  ” ( w 2  ’ wIw3)(Y2  “Yl “Y3Y4h)

“(w,“~,~,)~,vx,vx,* (5.5)



INTERACTIVE LEARNING 1 0 9

and for cancer:

f*(x)  =x,x,vx,vx,x,vx,~,v~,~,

= (w2  VW,W3)(Y*VY1  VY3Y4Y5)  Vx3”  (Y2VYl vY3Y4Ys)xs

v(w,vwIwg)x~vx‘&. P-6)

In total, we needed 29 calls to restore fl in the following form:

The same 29 calls were also needed to restore f2 independently. In reality,
however, we used 42 calls instead of 58 calls to restore both functions due
to the fact that the component functions cp and + are the same for the
target functions of both problems. For the record, we spent for the
dialogue with the medical expert no more than one hour.

At this point it is interesting to observe that if one wishes to restore the
nonmonotone Boolean function which corresponds to the concept: “biopsy
and not cancer, then this can be achieved easily as follows. First note that
the above concept represents cases in which surgery can potentially be
avoided. This concept can be presented with the composite formula
fi&]f2,  and thus it can be computed by using expressions (5.5) and (5.6).
Therefore, a total number of 42 calls is just sufficient to restore this
function (which is both nonmonotone and very complex mathematically).

5.3. INDEPENDENT SEARCH OF FUNCTIONS

Below, we systematically present how we obtained the results in Section
5.2. The main technical tool is Table 1. This table represents the dialogue
which was executed based on the algorithm for problem 1 (in Section 3).
The information in Table 1 resulted in the formation of formulas (5.2) to
(5.6). The first column of Table 1 indicates examples: the first number
indicates a Hansel chain and the second number indicates the location of
the vector within that chain. The second column presents binary vectors.
The third, fourth, and fifth columns present values of the functions fl,  f2,
and +, respectively. Asterisks “*” show values obtained directly from the
expert. Values without asterisks were inferred by using the previous values
and the property of monotonicity.



110 B. KOVALERCHUK ET AL.

TABLE 1
Dialogue Sequences for Numerical Experiment

Extension

# Vector fi f2 * 1 --f 1 O-0  f; fi f; f;

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
-

Chain 1
1 . 1 (01100)
1 . 2 (11100)

Chain 2
2 . 1 (01010)
2.2 (llOlO>

Chain 3
3 . 1 (11000)
3.2 (11001)

Chain 4
4 . 1 (10010)
4.2 (10110)

Chain 5
5 . 1 (10100)
5.2 (10101)

Chain 6
6 . 1 (00010)
6.2 (00110)
6.3 (01110)
6.4 (11110)

Chain 7
7 . 1 (00100)
7.2 (00101)
7.3 (01101)
7.4 (11101)

Chain 8
8 . 1 (01000)
8.2 (01001)
8 . 3 (OlOll>
8.4 (11011)

Chain 9
9 . 1 (10000)
9.2 (10001)
9.3 (10011)
9.4 (10111)

Chain 10
10.1 (00000)
10.2 (00001)
10.3 (00011)
10.4 (OOlll>
10.5 (01111)
10.6 (11111)

rota1  Calls

1* 1*  1* 1.2; 6.3; 7.3
1 1 1 6.4; 7.4

7.1; 8.1
5.1; 3.1

1*  1*
1 1

1
1

1*
1

1
1

1*
1

1
1

0*
1*
1
1

1
1
1
1

0*
1
1
1

0*
1*
1
1

0
1*
1
1
1
1
22

1*
1

0*
1*

1*
1

0*
1*

1*
1

0*
1*
1
1

1*
1
1
1

0
1*
1
1

0*
1*
1
1

0
0
1*
1
1
1

1* 0” 1* 2.2; 6.3; 8.3 6.1; 8.1
1 1*  1 6.4; 8.4 3.1; 6.1

1*  o*
1 1’

1* 1* 1*
1 1 1

3.2
7.4; 8.4

4.;;  9.3
6.4; 9.4

8.1; 9.1 1 1*
8.2; 9.2 1 1

1* o* 1*
1 1*  1

6.1; 9.1 1*  o*
6.2; 5.1 1 1*

1* 1* 1*
1 1 1

5.2
7.4;9  .4

7.1; 9.1 1 1*
7.2: 9.2 1 1

o* 0 o* 6.2; 10.3
1* 1*  o* 6.3; 10.4
1 1 1 6.4; 10.5
1 1 1 10.6

10.1
7 . 1

o* 0
1 1*
1 1
1 1

1* 1* o* 7.2; 10.4
1 1 o * 7.3; 10.4
1 1 1* 7.4; 10.5
1 1 1 5.6

10.1
10.2
8.2; 10.2

1 1*
1 1
1 1
1 1

o * 0 1* 8.2
1* 1* 1 8.3
1 1 1 8.4
1 1 1 10.6

10.1
10.2
10.3
9.3

o* 0
1 1*
1 1
1 1

o* 0 1* 9.2
1* 1* 1 9.3
1 1 1 9.4
1 1 1 10.6

10.1
10.2
10.3
10.4

o* 0
1 1*
1 1
1 1

0 0 0
1* o*  0
1 1* 0
1 1 1
1 1 1
1 1 1
13 13 12

10.2
10.3
10.4
10.5
10.6

0 0
1* 0*
1 1"
1 1
1 1
1 1
7 13



INTERACTIVE LEARNING 111

The sixth column shows the indexes of vectors for which we can use
monotonic&y  if a given function evaluates to 1 (i.e., true value). For
instance, for vector #7.1 we have fi(OOlO0)  = l*  (as given by the expert);
hence, we can also set (by utilizing the monotonicity property) f,(OOlOl)  = 1,
because vector (00101) is vector #7.2.  We can also do the same with vector
#10.4.

Similarly, the seventh column represents the indexes of the vectors for
which we can use monotonicity if a given function evaluates to 0 (i.e., false
value). For instance, for the vector #6.1 we have f,(OOOlO)  = 0* (as given
by the expert) and thus we can infer (by utilizing monotonicity) that
fi(OOOOO> = 0, where (00000) is vector #lO.l.  The values in column 3 for fi
are derived by up-down sliding in Table 1 according to the following five
steps:

Step 1. Begin from the first vector #l.l  (i.e., (01100)).
Action: Ask the expert about the value of f,(OllOO).
Result: The expert reported that f,(OllOO)  = 1.

Step 2. Write “l*”  next to vector #l.l  (and under column 3). Recall
that an asterisk denotes an answer directly provided by the expert. Appar-
ently, if the reply were false (0) then we had to write “O*” in column 3.
The case of having a false value corresponds to column 7 in Table 1.

Step 3. Action: Go to column 6 to find vectors to extend the true (1)
value.

Result: Vectors #1.2,  #6.3,  and #7.3.
Comment: They should yield (because of monotonicity) true value
(1).

Therefore, in column 3 and next to examples #1.2,  #6.3,  and
#7.3,  the values of the function must be (1) (note that now no
asterisk is used).

Step 4. Action: Go to vector #1.2 (next vector while sliding down). Check
whether the value of f,(lllOO)  has already been fixed or not.

If the value of f,(lllOO)  is not fixed (i.e., it is empty), then
repeat steps l-3, above, for this new vector (i.e., vector #1.2).

If fr(lllO0)  is not empty (i.e., it has been already fixed),  then
go to the next vector while sliding down (i.e., move to vector
#2.1).

(Note that if the value has not been fixed  yet, then we will
denote it by fi(x)  = e; for empty.)
Result: f,(lllOO)  #e.  Extend the values of the function for the
vectors #6.4 and #7.4.  and go to the next vector in the table (i.e.,
move to vector #2.1).

Step 5. The next vector is #2.1.  Continue as above with step 4, but now
we have vector #2.1 (instead of vector #1.2).



1 1 2 B. KOVALERCHUK ET AL.

The above procedure is repeated until all vectors and functions have
been covered. The interpretation of what happens in columns 8 to 11 is
provided in the next subsection. In order to construct formula (5.3) (which
was shown in Section 5.2),  one needs to concentrate on the information
depicted in columns 2 and 3 in Table 1. One needs to take the first vector
marked with “l*” in each one of the chains and construct for each of these
vectors a conjunction of nonzero  components. For instance, for the vector
(01010) in chain 2 the corresponding conjunction is x2x4.  Similarly, from
chain 6 we have taken the “1” components in the vector (00110) and
formed the conjunction x3x4.

We obtained the Boolean expressions (5.2) for x2 = $(y,,  y,, y3,  y,, ys>
from the information depicted in Table 1 (columns 2 and 5) with the
following steps: (i) First find all the maximal lower units for all chains as
elementary conjunctions; (ii) exclude the redundant terms (conjunctions)
from the end formula. Thus, at first from Table 1 (columns 2,5) we
Obtained x2  =hY2  “Y2Y3  vy2y4  “YlY3  ‘YlY4  “Y2Y3Y4  ‘Y2Y3Y5  vY2  “h ”
y,y,y,, and then we simplified it to y, Vy, Vy,y,y,.

Similarly as above, from columns (2,3,4)  in Table 1, we obtained the
initial components of the target functions of x1, x2,  x3, x4,  x5 for the bipsy
subproblem as follows: a

f,(X) =X2X3VX2X4VX,X,VX,X,VX,X3VX,X4VX,VX2X5vX,x,v’x,~

and for the cancer subproblem to be defined as:

The simplification of these disjunctive normal form (DNF)  expressions
allowed us to exclude some redundant conjunctions. For instance, in x2
the term y,y, is not necessary, because y, covers it. Thus, the right-hand
side parts in expressions (5.1) to (5.4) form the minimal DNFs.

5.4. SEQUENTUL  SEARCH FOR NESTED FUNCTIONS

Next, we show how it is possible to further decrease the number of calls
using a modification of the algorithm described for solving Problem 2.
Recall that the functions fi and f2 are nested because El GET. That is,
for any input example x, the following is true: f,(x) <f,(x).  The last
statement means that if we recognize cancer, then we recognize the
necessity of biopsy, too. The property f,(x) <fl(x) means that

if f2(x) =l, then f*(x)  = 1, (5.7)



INTERACTIVE LEARNING

and

113

if f*(x) =O, then f2(x)  =O.

The above realization permits one to avoid calls to the expert for deter-
mining the right-hand sides of (5.7) and (5.8),  if one knows the values of
the left-hand side.

The above idea can be used to make the dialogue with the expert more
efficient. This was done in this experiment and is described in Table 1.
Column 8 in Table 1 shows the results of using the values of f2  (column 4)
and property (5.7) to restore function f,.  For instance, for vector #6.2,
according to the expert we have f,(OOllO) = 1. Hence, by using (5.7) we
should also have f,(OOllO) = 1 without an additional call to the expert.
Column 9 represents the same situation for f2, if one knows the expert’s
answers for fl.  In this case, we use the pair {relation (5.81,  column (4))
instead of the pair {relation (5.71,column  5},  as was the case before.

Note that the asterisks “*” in columns 8 and 9 show the necessarily
needed calls. In order to restore function fl by using information regard-
ing values of f2, we asked the expert 7 times, instead of the 13 calls we had
to use for the independent restoration of function fi.  That is, now we were
able to use about 2 times less culls. In particular, the value f,(lOOOl) = 1 for
vector #9.2  was inferred from the fact f,(lOOOl) = 1. However, to restore
function f2  by using f,,  we asked the expert 13 times. That is, we asked
him as many times as during the independent restoration of f2  (i.e., the
nested approach was not beneficial in this case). This should not come as a
surprise, because the limits described in the previous sections are upper
limits. That is, on the average the sequential search is expected to
outperform a nonsequential approach, but cases like the last one can still
be expected.

The previous analysis shows that, in this particular application, the most
effective way was at first to restore f2 with 13 calls and next to use f2
values to restore fi,  which required only 7 additional calls. Restoration of
f2 by using information of values of function fi  required 13 calls, and to
restore both functions in E, would have required 13 + 13 = 26 calls. In the
sequence of the restoration ( f2, fl  ), the total amount of calls to restore
both functions is 13 + 7 = 20 calls, in comparison with 13 + 13 = 26 calls for
independent restoration. We should also add to both cases 12+  4 calls
which were needed to restore functions cp and I,!J. Therefore, in total we
needed 20 + 16 = 36 and 26 + 16 = 42 calls, respectively. Note that we
began from 2 x 2048 and 2 x 924 calls for both functions. Our totals of 36
and 42 calls are about 100 times less than the number of nonoptimized calls



1 1 4 B. KOVALERCHUK ET AL.

(i.e., 2 X 2048) and about 50 times less than the upper limit guaranteed
according to the Hansel lemma (i.e., the 2 X 924 calls).

5.5. A JOINT SEARCH APPROACH FOR NESTED FUNCTIONS

Next, we study the possibility to decrease the number of calls once more
with a joint search approach of fi and f2 by using the following switching
strategy:

Step 1. Ask the expert for the value of fZ( x1.1)  for vector #l.l.
Step 2. If f2( ~i.i) = 1, then ask for the first vector of the next chain.

That is, ask for the value of f,(x2.‘)  for vector #2.1.
Otherwise, ask for the value of f,(x’.‘).
Step 3. If f,(x’.‘)  = 0, then ask for the value of f,(x’.‘)  for vector #1.2.
Otherwise, switch to ask for the value of f,(x’.‘).

The generalization of the previous steps for arbitrary x’.~  is done with
steps A and B. Step A is for fl and step B is for f2.  These steps are best
described as follows:

Step A. If fi(~‘.~)  = 0 and vector #(i.k)  is not the last one in the current
chain and f,<x i,kf i)  = e (i.e., empty), then ask the expert for the value of
f,(~‘.~+  ‘).  Otherwise, ask for the value for the first vector xi+  ‘,j from the
next chain such that f,(x’+ ‘.j)  = e.

If f,(~~.~) = 1 and f2(~i.k)  =e, then ask for the value of f2(~i-k).
If fi(~~.~)  = 1 and f2(~i.k)  = 0, then ask for the value of f2(y),  where y

is the first vector from the same or the next chain such that f2(y) = e.
Step B. If f,(~~.~)  = 1, then ask for the first vector y of the next chain

such that f&y)  = e.
If f2(~i-k)  = 0 and f,(~~.~) = e, then ask the expert for the first vector y

such that f,(y) =e.

The results of applying this strategy to restore the two functions fl and
f2 are presented in Table 1 (in columns 10 and 11, respectively). The
number of calls to restore both fl and f2 is equal to 22 (see Table 1,
columns 10 and ll),  by asking for the values of f 1 8 times and for the
values of f2  14 times (see also the values marked with “*” in columns 10
and 11). Note that the previous algorithm required 22 calls.

Next, in Tables 2 and 3, we summarize the various results for interview-
ing the expert under the different strategies. Table 2 represents numbers
of calls for the different kinds of search for the functions fi,  f2, t,b in Es
and for 4~ in E,.  Table 3 represents results for E,,.  These results summa-



INTERACTIVE LEARNING 1 1 5

TABLE 2

Comparison of the Results in E, and E,

Ways of search
(2)

f, fi  fi,f2  Index 1 Index 2 cp  Ic,
(3) (4) (5) (6) (7) (8) (9)

1 Nonoptimized search (upper limit) 32 32 64 1 - 8 32
2 Optimal search (upper limit) 20 20 40 1.6 1 6 20
3 Independent search 1 3 1 3 26 2.5 1.5 4 12
4 Sequential search ( fl,  f2 > 1 3 1 3 26 2.5 1.5
5 Sequential search ( f2, fl ) 7 1 3 20 3.2 2.0
6 Joint search - - 22 2.9 1.8

rize the numbers of calls needed for the full restoration of f1 and f1 as
functions of 11 binary variables at level 2. In particular, note that the
independent search of fi required 13 calls in E,, 12 calls for $, and 4 calls
for cp,  that is, the 29 calls shown in Table 3. The sequential search (f2, fi >
required the same number of calls for f2,  but only 7 calls for fi, because
we used the same cp and + functions found for fl (see also Tables 2
and 3).

The total amount shown in column “fl,f2” (i.e., under column 5)
represents the number of calls to restore both functions. For the last four
hierarchical searches in this column, we excluded the nonnecessary calls
for the second restoration of +!J  and cp,  i.e., the 16 calls. For instance,
independent search required 29 calls to restore both fi and f2 in E,, that
is, a total of 42 calls in Eil, as shown in this column.

Next let us describe the meaning of indexes 1 and 2 in Tables 2 and 3.
We denote the upper limit of calls for nonoptimized search as In, and the
analogous amounts for other ways of the search for both functions (col-
umns 5) as Ini (for i = 2,3,4,5,6).  In these terms, index 1 =In,/ln, (for
i = 2,3,4,5,6)  and index 2 = In,/Ini  (for i = 3,4,5,6).  In particular, index 1

TABLE 3
Comparison of the Results in E,,

Ways of search
(2)

f2
(4)

fi,  f2 Index 1 Index 2
(5) (6) (7)

Nonoptimized search (upper limit) 2,048 2,048 4,096 1 -
Optimal search (upper limit) 924 924 1,848 2.22 1
Independent search 29 29 42 97.5 48.8
Sequential search ( f f2 >1, 29 1 3 42 97.5 48.8
Sequential search ( f2, f >1 7 29 36 113.8 51.3
Joint search - - 38 107.8 48.6



116 B. KOVALERCHUK ET AL.

shows that we used 3.2 times less calls than In, and 2.0 times less calls
than In, in E5,  and also 113.8 times less calls than In, and 51.3 times less
calls than In, in E,,. These interactive experiments demonstrate the
potential for achieving significantly high efficacy of the proposed approach
for interactive restoration of monotone Boolean functions.

6. CONCLUDING REMARKS

Some computational experiments (see, for instance, [12,36])  have shown
that it is possible- to significantly decrease the number of questions to an
oracle in comparison with the full number of questions (which is equal to
2”) and also in comparison with a guaranteed pessimistic estimation
(formula (2.2) in Section 2) for many functions. Some close form results
were also obtained for a connected problem of retrieval of maximal upper
zero [23].  The results in this paper demonstrate that an interactive ap-
proach, based on monotone and hierarchical Boolean functions, has the
potential to be very beneficial to interactive machine learning.

The authors are very grateful to Dr. James F. Ruiz,  from the Woman’s Hospital of Baton
Rouge, LA, for his expert assistance in formulating the medical example described in this
paper. The first two authors gratefully acknowledge the support from the Office  of Naval
Research (ONR)  Grant NOOO14-95-l-0639.

REFERENCES

1. D. Angluin, Queries and concept learning, Mach. Learn. 2(4):319-342 (1988).
2. N. Bshouty, T. Hancock, L. Hellerstein, and M. Karpinski, An algorithm to learn

read-once threshold formulas, and transformations between learning models, Com-
put. Complex. 4:37-6 (1994).

3. V. B. Alekseev, Monotone Boolean functions, in Encyclopedia of Mathematics,
Kluwer Academic Publishers, Norwell, MA, 1988, vol. 6, pp. 306-307.

4. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the
Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach. 36(4):929-965  (1989).

5. M. Bongard, Pattern Recognition, Nauka, Moscow, 1967 (in Russian) [English
translation, Spartakos Press, New York, 19701.

6. E. Boros, P. L. Hammer, and T. Ibaraki, Predicting cause-effect relationships from
incomplete discrete observations, SIAM J. Discrete Math. 7(4):531-543  (1994).

7. D. Cohn, L. Atlas, and R. Ladner, Improving generalizing with active learning,
Mach. Learn. 15:201-221 (1994).

8. R. Dedekind, Ueber Zerlegungen von Zahlen durch  ihre grossten gemeinsamen
Teiler, Fetschn’ft  Hoch. Bruunschweig 11:103-148 (1897).

9. T. C. Dietterich and R. S. Michalski, A comparative review of selected methods for
learning from examples, in Machine Learning: An Artificial Intelligence Approach, R.
S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Tioga Publishing Company,
Palo Alto, CA, 1983, pp. 41-81.



INTERACTIVE LEARNING

10. L. M. Fu, Knowledge-based connectionism for revising domain theories, IEEE
Trans. Syst. Man. Cybernet. 23(1):173-182 (1993).

11. S. Goldman and R. H. Sloan, The power of self-directed learning, Much. Learn.
14:271-294 (1994).

12. Y. Gorbunov and B. Kovalerchuk, An interactive method of monotone Boolean
function restoration, J.  Acad. Sci. UzSSR,  Eng. 2:3-6 (1982) (in Russian).

13. P. L. Hammer and E. Boros, Logical analysis: An overview, RUTCOR Res. Rep.,
Rutgers University, NJ, 1994.

14. G. Hansel, Sur le nombre des fonctions Boolenes monotones den variables, C. R.
Acad. Sci. Paris 262(20):  1088- 1090 (1966).

15. D. Haussler, Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework, Artilf  Zntelf.  36:177-221 (1988).

16. D. Haussler and M.-Warmuth, The probably approximately correct (PA0  and other
learning models,‘in  Foundation of Knowledge Acquisition: Machine Learning, A. L.
Meyrowitz and S. Chipman,  Eds., Kluwer  Academic Publishers, Norwell, MA, 1993,
pp,  291-312.

17. K. Hattoru and Y. Torri, Effective algorithms for the nearest neighbor method in
the clustering problem, Putt. Recog. 26(5):741-746 (1993).

18. A. P. Kamath, N. K. Karmakar, K. G. Ramakrishnan, and M. G. C. Resende, A
continuous approach to inductive inference, Math. Progr.  57:215-238  (1992).

19. A. P. Kamath, N. K. Karmakar, K. G. Ramakrishnan, and M. G. C. Resende, An
interior point approach to Boolean vector synthesis, in Proceedings of the 36th
MSCAS, 1994, pp. l-5.

20. B. Kamgar-Parsi  and L. N. Kanal, An improved branch-and-bound algorithm for
computing k-nearest neighbors, Putt. Recog. Lett. 3:7-12 (1985).

21. D. Kleitman, On Dedekind’s problem: The number of monotone Boolean functions,
Proc.  Am. Math. Sot. 21:677-682  (1969).

22. V. K. Korobkov, On monotone Boolean functions of algebra logic, in Problemy
Cybernetiki, Nauka, Moscow, vol. 13, pp. 5-28, 1965 (in Russian).

23. B. Kovalerchuk and V. Lavkov, Retrieval of the maximum upper zero for minimiz-
ing the number of attributes in regression analysis, USSR Computut. Math. Math.
Phys. 24(4):170-175  (1984).

24. B. Kovalerchuk, E. Triantaphyllou, and E. Vityaev, Monotone Boolean functions
learning techniques integrated with user interaction, in Proceedings of Workshop
“Learning from Examples vs. Programming by Demonstration,” 12th International
Conference on Machine Learning, Tahoe City, CA, 1995, pp. 41-48.

25. B. Kovalerchuk, E. Triantaphyllou, and J. F. Ruiz, Monotonicity and logical analysis
of data: A mechanism of evaluation of mammographic and clinical data, in SCAR
‘96, Computer Applications to Assist Radiology, Symposia Foundation, Carlsbad, CA,
1996, to appear.

26. T. Kurita, An efficient agglomerative clustering algorithm using a heap, Putt. Recog.
24(3):205-209  (1991).

27. 0. L. Mangasarian, W. N. Street, and W. H. Woldberg, Breast cancer diagnosis and
prognosis via linear programming, Oper. Res. 43(4X570-577 (1995).

28. T. Mitchell, The need for biases in learning generalizations, Tech. Rep. CBM-TR-
117, Rutgers University, New Brunswick, NJ, 1980.

29. P. M. Murphy and D. W. Aha,  UC1  repository of machine learning databases:
Machine-readable data repository, Dept. of Inform. Comput. Sci., University of
California, Irvine, CA, 1994.

30. B. K. Natarajan, On learning sets and functions, Much. Learn. 40X123-133 (1989).



118 B. KOVALERCHUK  ET AL.

3 1 . S. Rudeanu, Boolean Functions and Equations, North-Holland, Amsterdam, 1974.
32.  R. Schapire, Design and Analysis of Eficient  Learning Algorithms, MIT Press,

Cambridge, MA, 1992.
333. &i%‘4jShavlik,  Combining symbolic and neural learning, Mach. Learn. 14:321-331

54. E. Triantaphyllou, A. L. Soyster, and S. R. T. Kumara, Generating logical expres-
sions from positive and negative examples via a branch-and-bound approach,
Comput.  Oper. Res. 21(2):185-197  (1994).

3 5. E. Triantaphyllou, Inference of a minimum size Boolean function from examples by
using a new efficient branch-and-bound approach, J. Global Optim. 5(1):69-94
(1994).

3 6 E. Triantaphyllou and A. Soyster, An approach to guided learning of Boolean
functions, Math. C&put.  Model. 23(3):69-86  (1995).

3 7 V. N. Vapnik, Estimating of Dependencies Based on Empirical Data, Springer-Verlag,
New York, 1982.

3 8 L. G. Valiant, A theory of learnable, Commun. ACM 27:1134-1142  (1984).
-j 9. E. Vityaev and A. Moskvitin, Introduction to discovery theory. Program system:

DISCOVERY, Logical methods in informatics, in Computational Systems (Vychisfi-
tel’nye sistemy),  Institute of Mathematics, Russian Academy of Science, Novosibirsk,
1993, no. 148, pp. 117-163 (in Russian).

‘+ 0. W. W. Woldb erg and 0. L. Mangasarian, Multisurface method of pattern separa-
tion for medical diagnosis applied to breast cytology, Proc.  Nat. Acad.  Sci. USA,
87(23):9193-9196 (1990).

4 1. S. Yablonskii, Introduction to Discrete Mathematics, Nauka, Moscow, 1986 (in
Russian).

4 2. N. Zagoruiko, Empirical Forecast, Nauka, Novosibirsk, 1979 (in Russian).

Received  1 September 1995


