
16

Understanding I/O Performance Behaviors of Cloud Storage
from a Client’s Perspective

BINBING HOU and FENG CHEN, Louisiana State University
ZHONGHONG OU, Beijing University of Posts and Telecommunications, China
REN WANG and MICHAEL MESNIER, Intel Labs

Cloud storage has gained increasing popularity in the past few years. In cloud storage, data is stored in
the service provider’s data centers, and users access data via the network. For such a new storage model,
our prior wisdom about conventional storage may not remain valid nor applicable to the emerging cloud
storage. In this article, we present a comprehensive study to gain insight into the unique characteristics
of cloud storage and optimize user experiences with cloud storage from a client’s perspective. Unlike prior
measurement work that mostly aims to characterize cloud storage providers or specific client applications,
we focus on analyzing the effects of various client-side factors on the user-experienced performance. Through
extensive experiments and quantitative analysis, we have obtained several important findings. For example,
we find that (1) a proper combination of parallelism and request size can achieve optimized bandwidths,
(2) a client’s capabilities and geographical location play an important role in determining the end-to-end
user-perceivable performance, and (3) the interference among mixed cloud storage requests may cause
performance degradation. Based on our findings, we showcase a sampling- and inference-based method to
determine a proper combination for different optimization goals. We further present a set of case studies on
client-side chunking and parallelization for typical cloud-based applications. Our studies show that specific
attention should be paid to fully exploiting the capabilities of clients and the great potential of cloud storage
services.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Secondary storage;
D.4.8 [Operating Systems]: Performance—Measurements

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Cloud storage, storage systems, performance analysis, measurement,
performance optimization

ACM Reference Format:
Binbing Hou, Feng Chen, Zhonghong Ou, Ren Wang, and Michael Mesnier. 2017. Understanding I/O per-
formance behaviors of cloud storage from a client’s perspective. ACM Trans. Storage 13, 2, Article 16 (May
2017), 36 pages.
DOI: http://dx.doi.org/10.1145/3078838

An earlier version of this article was published in Proceedings of the 32nd International Conference on
Massive Storage Systems and Technology (MSST’16), Santa Clara, CA.
This work was supported in part by the Louisiana Board of Regents under grants LEQSF(2014-17)-RD-A-
01 and LEQSF-EPS(2015)-PFUND-391, the National Science Foundation under grants CCF-1453705 and
CCF-1629291, and generous support from Intel Corporation.
Authors’ addresses: B. Hou and F. Chen (corresponding author), Department of Computer Science and
Engineering, Louisiana State University, 102G Electrical Engineering Building, Baton Rouge, LA, USA
70803; emails: {bhou, fchen}@csc.lsu.edu; Z. Ou (corresponding author), Department of Computer Science
and Engineering, Beijing University of Posts and Telecommunications, Xitucheng Road 10, Haidian District,
Beijing, China 100876; email: zhonghong.ou@bupt.edu.cn; R. Wang and M. Mesnier, Intel Labs, Intel
Corporation, 2111 NE 25th Ave, Hillsboro, OR, USA 97124; emails: {ren.wang, michael.mesnier}@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1553-3077/2017/05-ART16 $15.00
DOI: http://dx.doi.org/10.1145/3078838

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

http://dx.doi.org/10.1145/3078838
http://dx.doi.org/10.1145/3078838

16:2 B. Hou et al.

1. INTRODUCTION

Cloud storage is a quickly growing market. According to a report from Information
Handling Services (IHS), personal cloud storage subscriptions increased to 500 million
in 2012 and will reach 1.3 billion by 2017 [IHS 2012]. The global market is expected to
grow from $18.87 billion in 2015 to $65.41 billion by 2020 [MarketsandMarkets 2015].
To date, cloud storage not only is used for archiving personal data but also plays an
indispensable role in various core commercial services, from serving videos on demand
to storing unstructured scientific data.

To end-users, cloud storage is particularly interesting because it provides a com-
pelling new storage model. In this model, data is stored in the service provider’s data
centers, and users access data through an HTTP-based REST protocol via the Inter-
net. By physically and logically separating data storage from data consumers, this
architecture enables enormous flexibility and elasticity, as well as the highly desirable
cross-platform capability. On the other hand, such a model is drastically different from
conventional direct-attached storage: the “storage medium” is replaced by a large-scale
storage cluster, which may consist of thousands of massively parallelized machines; the
“I/O bus” is generally the worldwide Internet, which allows connecting two geograph-
ically distant ends; the strictly defined “I/O protocol” is replaced by an HTTP-based
protocol; and the “host” is not a single computing entity anymore but could be any kind
of computing device (e.g., PCs or smartphones). All these properties, together, form a
rather loosely coupled system, which is fundamentally different from its conventional
counterpart. A direct impact of such change is that much of our prior wisdom about
storage, the basis for our system optimizations, may not continue to be applicable to
the emerging cloud-based storage.

This is because of several reasons. First, the massively parallelized storage cluster,
where data is stored, potentially allows a large amount of independent parallel I/Os to
be processed quickly and efficiently. In contrast, our conventional storage emphasizes
how to organize sequential I/O patterns to address the limitation of rotating medi-
ums [Ding et al. 2007; Jiang et al. 2005]. Second, compared to the stable and speedy
I/O bus, such as Small Computer System Interface (SCSI), the lengthy Internet con-
nection between the client and the cloud is slow, unstable, and sometimes unreliable.
A cloud I/O could travel an excessively long distance (e.g., thousands of miles from
coast to coast) to the service provider’s data center, which may involve dozens of net-
work components and finally result in an I/O latency of hundreds of milliseconds or
even more. Finally, the clients, which consume the data and drive the I/O activities,
are highly diverse in all aspects, from CPU to memory to storage to communication.
Certain specifications (e.g., CPU) are directly related to the capability of a client for
handling parallel network I/Os.

Unfortunately, our current understanding of storage behaviors is mostly confined to
the conventional storage, which is well defined and heavily tuned to scale in a limited
scope, such as direct attached storage or local Storage Area Network (SAN). Some
recent studies have benchmarked the performance of cloud storage services [Li et al.
2010; Cooper et al. 2010; Bocchi et al. 2014] and cloud storage clients [Cooper et al.
2010; Meng et al. 2010; Drago et al. 2013, 2014, 2012; Gracia-Tinedo et al. 2013; Ou
et al. 2015]. These studies mostly focus on either benchmarking cloud storage on the
server side or testing specific cloud storage client applications. In this work, we consider
the cloud storage service as a “black box” and aim to observe and analyze the end-to-end
performance behaviors from a client’s perspective. The user-perceivable cloud storage
performance is a result of the interactions between the cloud and the client. A unique
challenge in cloud storage is the highly diverse working scenario—cloud storage clients
accessing the same cloud can be of very different capabilities (e.g., smartphones, tablets,

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:3

desktops, servers); even the same client could have variable performance, such as
different network speeds caused by the changes of geographical locations. This strongly
motivates us to obtain key insight into the unique I/O behaviors of cloud storage, a
storage solution for the cloud, especially from the perspective of data consumers.

Specifically in this article, we attempt to answer a set of important questions listed
to follow. Successfully answering these questions can help us understand not only
the effects of several conventional key factors (e.g., parallelization and request sizes)
on cloud I/O behaviors but also several new issues (e.g., client capabilities and geo-
distances), which are unique to the cloud-based storage model.

—Parallelization and request size are two key factors affecting the performance of
storage. What are their effects on the performance of cloud storage? Can we make a
proper tradeoff between parallelism degree and request size?

—CPU, memory, and storage are three major components defining the capability of
a client. In the scenario of cloud storage, which is the most critical one affecting
the performance of cloud storage? What are their effects on the performance under
different workloads?

—The geographical distance between the client and the cloud determines the Round-
Trip Time (RTT), which is assumed to be a critical factor affecting the cloud storage
speed. What is the effect of such geographical distance to cloud I/O bandwidths and
latencies? Should we always attempt to find a nearby data center of a cloud storage
provider?

—Parallel reads and writes have been observed having an impact on each other in
conventional storage [Chen et al. 2009]. How do cloud storage reads (GET) and
writes (PUT) generated by a client interfere with each other? Which one is affected
the most?

—Cloud storage provides an object-based storage service. The request size may not
always be equal. If large requests and small requests are mingled, what is the effect,
and which one is more sensitive to the interference?

—Based on our experimental studies on the performance of cloud storage, what are the
associated system implications? How can we use them to optimize client applications
by efficiently exploiting the advantages of cloud storage?

To answer these critical questions, we present a comprehensive experimental study
on cloud storage from a client’s perspective. In essence, our study regards cloud storage
as a type of storage service rather than network service. As such, we are more inter-
ested in characterizing the end-to-end performance perceived by the client, rather than
the intermediate communications. We believe this approach also echoes the demand
for thoroughly understanding cloud storage for a full-system integration as a storage
solution [Chen et al. 2014].

For our experiments, we develop and run a homemade test tool over Amazon Simple
Storage Services (S3). By using latencies and bandwidths, which are the two key
metrics used in storage studies, we perform a series of experiments with five different
client settings (each client is an Amazon EC2 instance) to study the effect of clients’
capabilities and locations on perceived performance. It is also worth noting that our
main purpose is not to benchmark the speed of specific cloud storage services. We
desire to investigate the end-to-end effects of the major factors that are related to
the cloud and its client and gain insight on how to make proper optimizations on the
client side. Specifically, we investigate each factor by controlled comparison. Namely,
we change one configuration of the baseline client each time and observe its impact on
performance.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:4 B. Hou et al.

Our contribution can be summarized as follows:

—Unlike prior measurement work that mostly aims to characterize cloud storage ser-
vices or specific client applications, we focus on analyzing the effect of client-related
factors (e.g., client’s capability and location) on the user-experienced performance
and the direct interactions between the client and the cloud. For this purpose, we
build a homemade tool to access Amazon S3, one of the most popular cloud storage
providers, running on Amazon EC2 instances as clients.

—Through extensive experiments and quantitative analysis, we have obtained sev-
eral important and interesting findings: (1) Parallelizing I/Os and organizing large
requests are key to improving client-perceivable performance. An optimized band-
width could be achieved with a proper combination of the two parameters, parallelism
degree and request size. (2) Client capabilities, including CPU, memory, and storage,
play an important role in determining the end-to-end performance. (3) A long geo-
graphical distance affects client-perceived performance but does not always result
in lower bandwidth. Appropriately parallelizing cloud I/Os can effectively hide the
impact of long geo-distances. (4) The interference among mixed cloud storage re-
quests may cause significant performance degradation and should be paid sufficient
attention to.

—Based on our findings, we present a sampling- and inference-based method to deter-
mine a proper combination of two key factors: parallelism degree and request size.
We also show the possible strategies that can be taken to achieve different opti-
mization goals: reducing latency and increasing bandwidth. The evaluation results
demonstrate the effectiveness of this method.

—We further present a set of case studies on client-side chunking and parallelization
for typical cloud-based applications including informed prefetching, synchronization,
and file systems. In these case studies, we showcase how to efficiently take advan-
tage of the great performance potential of cloud storage with appropriate client-side
optimization.

The rest of the article is organized as follows. Section 2 introduces background.
Section 3 describes the methodology for our experimental studies. Section 4 presents
the observations and analyzes the results. Section 5 describes the sampling- and
inference-based method. Section 6 presents the case studies. Section 7 discusses the
system implications of our findings. Related work is presented in Section 8, and the
last section concludes this article.

2. BACKGROUND

2.1. Cloud Storage Model

In cloud storage, the basic entity of user data is an object. An object is conceptually sim-
ilar to a file in file systems. An object is associated with certain metadata in the form of
key/value pairs. Typically, an object can be specified by a URL consisting of a service ad-
dress, a bucket, and an object name (e.g., https://1.1.1.1:8080/v1/AUTH_test/c1/foo). The
maximum object size is typically 5GB, which is the limit of the HTTP protocol [Amazon
2010]. Objects are further organized into logical groups, called buckets or containers. A
bucket/container is akin to a directory in a file system but cannot be nested.

Almost all cloud storage service providers offer an HTTP-based Representational
State Transfer (REST) interface to users for accessing cloud storage objects. Some
also provide language-specific APIs for programming. Two typical operations are PUT
(uploading) and GET (downloading), which are akin to write and read in conventional
storage. Other operations, such as DELETE, HEAD, and POST, are provided to remove

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:5

objects and retrieve and change metadata. For each operation, a URL specifies the
target object in the cloud storage. Additional HTTP headers may be attached as well.

2.2. Cloud Storage Services

Cloud storage is designed to offer convenient storage services with high elasticity,
reliability, availability, and security guarantees. Amazon S3 [Amazon 2015c] is one of
the most typical and popular cloud storage services. Other cloud storage services, such
as OpenStack Swift [OpenStack 2011], share a similar structure. Typically, the cloud
storage service is running on a large-scale storage cluster consisting of many servers
for different purposes, from handling HTTP requests to accounting to storage to bucket
listings, and so forth. These servers could be further logically organized into partitions
or zones based on physical locations, machines/cabinets, network connectivity, and so
on. For reliability, the zones/partitions are isolated from each other, and data replicas
should reside separately. In short, the cloud storage services are built on a massively
parallelized structure and are highly optimized for throughput.

2.3. Cloud Storage Applications

Applications can access cloud storage in different ways. Some applications use the
vendor-provided APIs to directly program data accesses to the cloud in their software.
Such APIs are provided by the service provider and are usually language specific (e.g.,
Java or Python). Since a cloud storage object can be located via a specified URL, users
can also manually generate HTTP requests by using tools like curl to access the
link.

A more popular category of cloud storage applications is personal file sharing and
backup (e.g., Dropbox). Such applications often provide a file-system-like interface to
allow end-users to access cloud storage. From the perspective of data exchange, these
clients often use syncing or caching to enhance user experience. With the syncing
approach, the client maintains a complete copy of the data stored on the cloud-side
repository. A syncer daemon monitors the changes and periodically synchronizes the
data between the client and the cloud. With the caching approach, the client only main-
tains the most frequently used data locally, and any cache miss leads to on-demand data
fetching from the cloud. In practice, the syncing mode is adopted by almost all personal
cloud storage applications, such as Dropbox [2015], Google Drive [Google 2015], and
OneDrive [Microsoft 2015]. The caching mode is adopted by applications and storage
systems that make use of the cloud as a part of the I/O stack, such as RFS [Dong et al.
2011; S3FS 2015; S3Backer 2015], BlueSky [Vrable et al. 2012], and SCFS [Bessani
et al. 2014]. In general, all the aforementioned applications essentially convert the
POSIX-like file operations into HTTP requests (e.g., a read function call is converted
to a GET HTTP request). To accurately and directly observe data exchange between
the client and the cloud, our study carefully avoids using any specific application tech-
niques (e.g., caching and prefetching) but directly uses the HTTP protocol, which is the
underlying communication protocol in cloud storage. This well serves the purpose of
our experiments for providing design guidance to optimize cloud storage clients, such
as making appropriate caching and prefetching decisions.

3. MEASUREMENT METHODOLOGY

As mentioned earlier, the main purpose of our experimental studies is to characterize
the performance behaviors of cloud storage from the client’s perspective. In our exper-
iments, we treat the cloud as a “blackbox” storage. In order to avoid interference from
client-side optimizations, we carefully generate raw cloud I/O traffic via the HTTP-
based REST protocol to directly access the cloud storage and observe the performance
on the client side.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:6 B. Hou et al.

Table I. Configurations of Amazon EC2-Based Clients

Client Instance Location Zone vCPU Memory Storage
Baseline m1.large Oregon us-west-2a 2 7.5GB Magnetic(410GB)
CPU-plus c3.xlarge Oregon us-west-2a 4 7.5GB Magnetic(410GB)

MEM-minus m1.large Oregon us-west-2a 2 3.5GB Magnetic(410GB)
STOR-ssd m1.large Oregon us-west-2a 2 7.5GB SSD(410GB)

GEO-Sydney m1.large Sydney ap-southeast-2a 2 7.5GB Magnetic(410GB)
Note: The SSD used in our experiments is the provisioned SSD with 3,000 IOPS, and all the clients are
equipped with Moderate network (tested as 82MB/s) and Ubuntu 14.04 LTS (PV).

Table II. Magnetic Versus SSD on Amazon EC2
��������Size

Speed Magnetic SSD
Read Write Read Write

1KB 2.13MB/s 0.77MB/s 2.7MB/s 1.24MB/s
4KB 6.70MB/s 3.13MB/s 10.57MB/s 5.67MB/s
16KB 6.80MB/s 4.60MB/s 34.87MB/s 10.65MB/s
64KB 7.36MB/s 10.67MB/s 62.00MB/s 28.48MB/s

256KB 17.36MB/s 17.46MB/s 58.24MB/s 86.63MB/s
1MB 38.33MB/s 22.38MB/s 58.24MB/s 82.71MB/s
4MB 61.59MB/s 23.20MB/s 58.06MB/s 82.72MB/s
16MB 58.12MB/s 22.66MB/s 58.12MB/s 82.92MB/s

3.1. Main Experimental Platform

Cloud storage services: Our experiments are conducted on Amazon Simple Storage
Services (S3). As a representative cloud storage service, Amazon S3 is widely adopted
as the basic storage layer in consumer and commercial services (e.g., Netflix and
EC2). Some third-party cloud storage services, such as Dropbox, are directly built
on S3 [Dropbox 2015]. In our experiments, we use the S3 storage system hosted in
Amazon’s data center in Oregon (s3-us-west-2.amazonaws.com).

Cloud storage clients: In order to run the experiments in a stable and well-
contained system, we choose Amazon EC2 as our client platform from which the cloud
storage I/O traffic is generated to exercise the target S3 repository. An important
reason for choosing Amazon EC2 rather than our own machines is to have a quantita-
tively standardized client that provides a publicly available baseline for repeatable and
meaningful measurement. For analyzing the impact of client-related factors, we cus-
tomize five configurations of Amazon EC2 instances that feature different capabilities
in terms of CPU, memory, storage, and geographical location. Table I shows these con-
figurations. The Baseline client is located in Oregon and equipped with two processors,
7.5GB memory, and 410GB disk storage (denoted as Magnetic). The speeds of the Mag-
netic and the SSD are tested and shown in Table II. The other four configurations vary
in different aspects, specifically CPU, memory, storage, and geographical location (in
Sydney). These instances with different configurations can properly satisfy our needs
of observing cloud storage performance with “controlled comparison,” which means
that we observe the effect of an individual factor by comparing the performance of the
Baseline client with the client that has exactly one different configuration each time.
For example, we investigate the effect of the client CPU by comparing the performance
observed on the Baseline client with that on the CPU-plus client, because these two
clients only have different CPUs while other configurations remain the same. In other
words, our main objective is not to benchmark specific cloud storage clients; instead,
we are more interested in the performance difference between the Baseline client and
the other comparison clients.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:7

Table III. Object-Based Workloads

Object Size Object Number Workload Size
1KB 81920 80MB
4KB 40960 160MB
16KB 40960 640MB
64KB 40960 2,560MB
256KB 40960 10,240MB
1MB 16384 16,384MB
4MB 4096 16,384MB

16MB 2048 32,768MB

3.2. Additional Experimental Platform

The aforementioned cloud storage data centers and clients are the basic platforms for
us to investigate the effects of different client-related factors. To verify some of our
findings, we further deploy our tests on other data centers and clients for verification.
In Amazon storage clusters, we also use another S3 data center in Ireland (s3-eu-
west-1.amazonaws.com) and set up an EC2 client in Ireland (denoted as GEO-Ireland).
GEO-Ireland has the same configurations as the Baseline client except the geographical
location. In addition, a client located on the LSU campus (denoted as Local-campus) is
also used as the client outside Amazon’s storage clusters. This client is a workstation
equipped with a four-core 3.2GHz Intel Xeon CPU, 8GB memory, a 910GB disk drive,
1,000Mbps network connection, and installed with Ubuntu 12.04.5 LTS and Ext4 file
system. The read speed of the disk is tested as 167MB/s, and the write speed is 137MB/s
for sequential access. With these additional test platforms, we can verify our findings
in a more general way.

3.3. Testing Tool and Steps

For our experiments, we have developed a homemade tool that can flexibly generate
different workloads and directly issue raw cloud storage I/O requests to the S3 storage.
The tool uses the S3 API [Boto 2015b], which is HTTP based and provided by Amazon.
As mentioned in the prior section, we purposely avoid using POSIX APIs (e.g., S3FS),
because our goal is to gain the direct view of the cloud storage performance from the
client side. Certain techniques (e.g., local cache, data deduplication, data compres-
sion) used in some client tools will prevent us from observing the cloud I/O behaviors
completely or accurately.

Our testing tool generates workloads with four parameters: request type, request
size, parallelism degree, and object number. Specifically, request type refers to PUT or
GET (i.e., uploading or downloading); request size refers to the size of the requested
object; parallelism degree refers to the number of concurrent requests to cloud storage;
and object number refers to the number of the objects to be requested in test. Limited by
the current implementation of Amazon S3 APIs [Boto 2015a], our testing tool generates
upload and download requests for one individual object per connection.

Each run of the test is composed of three steps: (1) Generating workloads and a
thread pool. For both uploading and downloading tests, we generate a pool of objects
of the same size (determined by the parameter request size); the number of the objects
is determined by the parameter object number. Table III gives more details of the
workloads used in our experiments for different object sizes. For the uploading test,
the objects will be stored on the client disk, meaning that each object to be uploaded
has to be read from the client disk first; for the downloading test, the objects have
to be first stored in the cloud as the workload. It is noted that the downloading tests
consider the full sync cycle, in which objects are necessarily first saved to the client

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:8 B. Hou et al.

storage as most cloud clients do, leading to the effects of client storage that we will see
later. In particular, each object is associated with a unique ID. That is because we hope
to make each request unique, avoiding the possible interference caused by requesting
the same objects. Besides, we also create a thread pool, in which the number of the
threads is determined by the parameter parallelism degree. (2) Sending requests and
collecting the test results. In this step, the threads are responsible for sending requests
associated with the objects concurrently. The test results including the latency of each
request are collected. (3) Processing the collected test data and reporting the statistics
data (e.g., average latency and bandwidth).

Two main metrics used in our experiments are latency and bandwidth. Specifically,
latency refers to the end-to-end completion time of each request (i.e., the time used
to upload/download a single object); bandwidth refers to the aggregate bandwidth
observed on the client (i.e., the total amount of the data uploaded or downloaded by
the client in a time unit), which is calculated as object size×object num

duration , in which object_size
denotes the size of a single object, object_num denotes the number of objects, and
duration denotes the time taken to upload/download all the objects. In this article, we
also use peak bandwidth to refer to the maximum bandwidth observed on the client for
a given workload.

3.4. Accuracy

Considering the possible variance of network services and multithread scheduling, we
take the following measures to ensure the accuracy and repeatability of the experi-
ments: (1) as stated earlier, we customize the instances of Amazon EC2, which can
provide stable services as standard clients rather than picking up a random machine;
(2) to avoid memory interference across experiments, the memory is flushed before
each run of the experiments; (3) we make the size of the workloads large enough (see
Table III) so that each run of an individual experiment lasts for a sufficiently long
duration (at least 60 seconds) while still being able to complete the experiments within
a reasonable time frame; and (4) each experiment is repeated five times, and we report
the average value.

4. PERFORMANCE STUDIES

To comprehensively reveal the effects of different factors, our measurement work is
composed of two parts. We first conduct a set of general experiments to evaluate the
properties of cloud storage, including parallelism degree and request size. We then
focus on studying the effects of client capabilities, including CPU, memory, storage, and
geographical locations of the clients. We further conduct a set of extensive experiments
to unveil the effects of interference among mixed parallel requests, including mixed
upload/download requests and mixed small/large requests.

4.1. Basic Observations

Parallelism and request size are two critical factors that significantly affect the stor-
age performance. Considering the parallelism potential of cloud storage, we set the
parallelism degree up to 64. With regard to request size, prior work has found that
most user requests are not excessively large [Bocchi et al. 2015], typically smaller
than 10MB [Drago et al. 2012]. Also, for transfer over the Internet, most cloud storage
clients split large requests into smaller ones. Wuala and Dropbox, for example, adopt
4MB chunks, and Google Drive uses 8MB chunks, while OneDrive uses 4MB for upload
and 1MB for download [Bocchi et al. 2015]. Therefore, we set the request size up to
16MB to study the size effect.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:9

Fig. 1. Upload/download bandwidths on Baseline.

4.1.1. The Effect of Parallelism. I/O parallelization is crucial to exploiting the massively
parallelized nature of cloud storage. In our experiments, we have observed a strong
impact of parallelism to bandwidths and latencies perceived at the client side.

The effect of parallelism on bandwidth. Proper parallelization can dramatically
improve the bandwidth, while overparallelization may lead to bandwidth degradation.
As shown in Figure 1, for example, the bandwidth of 1KB upload requests can be
improved up to 27-fold (from 0.025MB/s to 0.666MB/s), and the bandwidth of 1KB
download requests can be improved up to 21-fold (from 0.03MB/s to 0.634MB/s). There
are two reasons for this. One reason is due to the underlying TCP/IP protocol for
communication. With TCP/IP, the client and the cloud have to send ACK messages to
confirm the success of the transmission of data packets. With a high parallelism degree,
multiple flows can continuously transmit data since the time taken by each parallel
request to wait for the ACK messages overlaps. Another reason is that smaller requests
often require fewer client resources, so the client can support a higher parallelism
degree to saturate the pipeline until the effect of parallelization is limited by one of the
major client resources.

On the other hand, overparallelization brings diminishing benefits and even negative
effects. For example, 16MB upload sees a slight performance degradation caused by
overparallelization. This is related to the overhead of maintaining the thread pool
when the CPU is overloaded. As observed, for 16MB uploading, when the parallelism
degree increases from one job to eight jobs, the CPU utilization quickly grows from
23% to almost 100%. Under this condition, further increasing the parallelism degree
will cause performance loss. In a later section, we will further study the effect of CPU.

The effect of parallelism on latency. Appropriately parallelizing cloud storage
I/Os may not significantly affect the latency (i.e., end-to-end request completion time),
while overparallelization could lead to a substantial increase of latency. As shown in
Figure 2 and Figure 3, this speculation is confirmed by the tendencies of the growing
average latencies for both upload and download requests as the parallelism degree in-
creases. For example, for 4KB upload requests, when the parallelism degree increases
from 1 to 16, the average latency basically remains the same (about 36ms). When the
parallelism degree further increases from 16 to 64, the average latency increases by
43% (from 36.1ms to 51.5ms). For large requests, when the parallelism degree exceeds
a threshold, the average latency increases linearly. For example, for 16MB upload re-
quests, when the parallelism degree increases from 4 to 64 (16-fold), the average latency
increases from 1.1s to 18.3s (17.3-fold). This implies that for latency-sensitive applica-
tions, overparallelization (especially for large requests) should be carefully avoided.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:10 B. Hou et al.

Fig. 2. Average upload latencies on Baseline.

Fig. 3. Average download latencies on Baseline.

Fig. 4. CDFs of upload latencies with different parallelism degrees on Baseline.

Latency distributions. Another finding is that the latency distribution of large
requests is more scattered, especially under a high parallelism degree. As shown in
Figure 4 and Figure 5, the latency distributions of 4KB requests concentrate in a
narrow range, while the latency distributions of 4MB requests spread in a wide range.
For example, when the parallelism degree is 64, the distribution range of 4KB upload
requests is from 20 to 200ms, while the range of 4MB upload requests is 200ms to 10s.
This implies that in the scenario of parallelism, the latency of small requests is more
predictable than that of large requests.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:11

Fig. 5. CDFs of download latencies with different parallelism degrees on Baseline.

Fig. 6. CDFs of download latencies with different parallelism degrees on Baseline with ramfs.

We also note the “steps” in the latency CDFs of 4MB downloading requests, which
are not as smooth as other CDFs. This is likely to be caused by the interference of the
memory flushing behavior. Linux flushes dirty data in memory periodically to external
disk. With a large memory buffer and moderate incoming traffic, such asynchronous
memory-flushing operations can be quickly completed and hidden from the foreground
I/Os. When the arrival rate is higher than the flushing rate, such a flushing operation
may cause this effect. In this case, since the disk speed is limited (only 23MB/sec) and
lower than the downloading speed (78MB/sec), the client memory will be quickly used
up, and the disk flushing time would be reflected in the critical path and affect the
user-perceived latency, causing the observed pattern. To confirm this speculation, we
repeated the experiments by replacing the disk with ramfs, which removes the disk
bottleneck, and we can see in Figure 6 that such “steps” disappear, which confirms our
speculation.

4.1.2. The Effect of Request Size. In conventional storage, request size is crucial to or-
ganizing large and sequential I/Os and is important in amortizing the disk head seek
overhead. A similar effect has also been observed in cloud storage.

The effect of request size on bandwidth. As expected, increasing request size
(i.e., the size of GET/PUT) can significantly improve bandwidth, but the achieved
benefit diminishes as the request size exceeds a threshold. As shown in Figure 1(a)
and Figure 1(b), the peak bandwidths of large requests and small requests have a
significant gap. For example, the peak bandwidth of 4MB upload requests is 23.5
times that of 4KB upload requests (58.9MB/s vs. 2.5MB/s); the peak bandwidth of
4MB download requests is 10.7 times that of 4KB download requests (28.9MB/s vs.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:12 B. Hou et al.

2.7MB/s). There are several reasons for this phenomenon. One reason is that larger
I/O requests on client storage generally have higher I/O speeds than small ones
(see Table II). Another reason is that larger requests have higher efficiency of data
transmission via the network due to the packet-level parallelism [Huan 2002]. Also, a
larger request size can better amortize the related overhead.

Similar to the effect of parallelization, increasing the request size cannot bring an
unlimited bandwidth increase, due to the constraint of other factors. For example, the
speed of client storage is limited. Uploaded objects need to be first read from the
local device, and downloaded objects need to be written to the local device. As shown
in Table II, when the request size grows from 4MB to 16MB, the speed of Magnetic
improves slightly, which limits the I/O speed of the client side. Also, the maximum size
of the TCP window is limited, though tunable [Amazon 2015d; Jacobson et al. 1992].
When the request size exceeds a certain threshold, the benefit brought by increasing
the request size diminishes. In addition, other factors, such as the link bandwidth on
the route, processing speed on the cloud side, and so forth, can also limit the achievable
bandwidth. All these observations demonstrate that the benefit obtained by increasing
the request size is significant but is not unlimited.

The effect of request size on latency. Both increasing request size and paralleliz-
ing small requests can lead to increased latency. For example, as shown in Figure 2
and Figure 3, when the parallelism degree is 1, the average latency of 4MB download
requests is 192ms—5.8 times that of 1MB download requests (33ms). However, when
taking parallelism degree into consideration, things become different. For example, the
average latency of 4MB download requests at parallelism degree 1 is 192ms, which is
13.8 times lower than the average latency of 1MB download requests at parallelism
degree 64 (2.9s). Therefore, without considering the latency increase caused by overpar-
allelization, it is difficult to assert that larger requests imply longer latencies.

For small requests, even at the same parallelism degree, the latencies do not necessarily
increase as the request size increases. Figure 2(a) shows that the average latencies
of 1KB and 4KB upload requests are nearly the same. Similarly, in Figure 3(a), we
find that the average latencies of 1KB, 4KB, and 16KB download requests are nearly
equal. The request latency is mainly composed of three parts: data transmission time
via network, client I/O time, and other processing time. For small requests, the data
transmission time only accounts for a small portion of the overall latency, while the
other two dominant parts remain mostly unchanged, which makes the latencies of
small requests similar. Also, since the maximum TCP window is 64KB by default,
considering parallelism of the network [Huan 2002], the transmission time of the data
that are smaller than 64KB is supposed to be similar.

4.1.3. Parallelism Versus Request Size. In prior sections, we find that either increasing the
parallelism degree or increasing the request size can effectively improve the bandwidth,
but both of them have limitations. Here naturally comes an interesting question: does
there exist a combination of parallelism degree and request size to achieve the optimal
performance?

Answering this question has a practical value. Consider the following case: if we
have a 4MB object to upload, we can choose to upload it by a single thread or split it
into four 1MB chunks and upload them in parallel. Which is faster?

Figure 7 shows the performance under different combinations of parallelism degree
and request size. Obviously, 256KB×16 has the highest bandwidth (44.2MB/s), which
is about 3 times of the lowest (14.5MB/s). This shows that a proper combination exists
and can achieve optimal performance. This observation confirms that appropriately
combining request size and parallelism degree can sufficiently improve the bandwidth
beyond optimizing only one dimension.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:13

Fig. 7. Upload bandwidths of different combinations on Baseline.

We also find that, in some cases, either increasing the parallelism degree or increasing
the request size by the same factor can achieve the same bandwidth improvement. For
example, for upload requests, 1KB×16, 4KB×4, and 16KB×1 have a similar bandwidth
(0.4MB/s). Here comes another practical question: if we have a set of small files (e.g.,
1KB), should we adopt a high parallelism degree (e.g., 16) or bundle small files together
for creating a larger request size (e.g., 16KB)? From the perspective of improving
bandwidth, either a high parallelism degree or large request size is feasible. However,
from the perspective of the utilization of client resources, we find that a large request
size requires fewer CPU resources. Through vmstat in Linux, we find that the CPU
utilization of the previous three cases is 65%, 15%, and 5%, respectively. This indicates
that for the combinations that can achieve comparable bandwidth, a larger request
size consumes fewer CPU resources. That is because for a larger request size, fewer
threads have to be maintained to achieve the similar bandwidth, which consequently
reduces the CPU utilization.

4.1.4. Additional Remarks. To further verify our findings, we have also repeated the
same experiments with two additional experiment settings. We first repeated the ex-
periments on the GEO-Ireland client, which was configured the same as the Base-
line client and accessed the S3 storage in Amazon’s Ireland data center (s3-eu-west-
1.amazonaws.com), and we had similar observations. We also obtained a similar finding
in our experiments with the Local-campus client, which is a workstation on the LSU
campus and accessed the S3 storage in Amazon’s Oregon data center. In Section 4.2
and Section 4.3, we will further investigate how clients’ capabilities and geographical
distance affect the end-to-end performance.

Summary: In this section, we investigate the effects of parallelism and request size
on the access latency and bandwidth of cloud storage observed on the client side. Sim-
ilar to some prior work (e.g., Ou et al. [2015]), we find that parallelism and request
size are important to the perceived performance of cloud storage and also have sev-
eral other interesting findings. For example, access latencies of small requests (e.g.,
smaller than 64KB) are comparable; parallelization may make the access latencies
more unpredictable. Another practically useful finding is that a proper combination of
parallelism degree and request size will be helpful to achieve desirable performance.
Based on this observation, we also present a sampling- and inference-based approach
for deciding proper combinations in Section 5.

4.2. Effects of Client Capabilities

Unlike conventional storage, cloud storage clients are very diverse. In this section, we
study different factors affecting the client’s capabilities of handling cloud storage I/Os,
namely, CPU, memory, and storage. We compare the performance of three different

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:14 B. Hou et al.

Fig. 8. Peak bandwidth comparison (Baseline vs. CPU-plus).

clients, including CPU-plus, STOR-ssd, and MEM-minus, with the performance of the
Baseline to reveal the effects of each factor.

4.2.1. The Effect of the Client CPU. In cloud storage I/Os, the client CPU is responsible
for both sending/receiving data packets and client I/Os. In this section, we investigate
the effect of client CPU by comparing the performance of Baseline (two CPUs) and
CPU-plus (four CPUs).

The effect of client CPU on bandwidth. The client CPU has a strong impact on
cloud I/O bandwidth, especially for small requests. Figure 8 shows the peak bandwidth,
which is the maximum achievable bandwidth with parallelized requests. We can see
that the peak bandwidth of small requests (smaller than 256KB) increases significantly.
Interestingly, as shown in Figure 8(b), the peak download bandwidth of 1KB, 4KB, and
16KB requests doubles, as the computation capability doubles (two CPUs vs. four
CPUs). This vividly demonstrates that small requests are CPU intensive, and as so,
small requests receive more benefits from a better CPU.

Large requests, compared to small ones, are relatively less sensitive to CPU resources,
as the system bottleneck shifts to some other components. As shown in Figure 8, com-
pared with Baseline, the peak upload and download bandwidth of large requests
(256KB to 16MB) increases only slightly. The system bottleneck may result from the
limitation of other factors, such as memory or storage, rather than CPU.

The effect of the client CPU on latency. In our tests, we find that the client
CPU does not have significant effects on average latency. For small requests, the data
transmission via network dominates the overall latency, while for large requests, the
majority of the overall latency is the client I/O time (the I/O waiting time may be
significant when client storage becomes the bottleneck) and the cloud response time.
In the latter cases, a more powerful CPU does not help reduce the latency.

4.2.2. The Effect of Client Storage. Client storage plays an important role in data upload-
ing and downloading: For uploading, the data is first read from the client storage; for
downloading, the data is written to the client storage. To evaluate the effect of client
storage, we set up a comparison client STOR-ssd. The only difference between Baseline
and STOR-ssd is storage (Magnetic vs. SSD). Table II shows more details about the
two client storages.

The effect of the client storage on bandwidth. We find that client storage is
a critical factor affecting the achievable peak bandwidth. As shown in Figure 9, on
STOR-ssd, the peak download bandwidth increases significantly. For example, the peak
download bandwidth of 4MB requests increases by 165% (76.6MB/s vs. 28.9MB/s). On
the other hand, we also notice that the upload bandwidth increases slightly. Different

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:15

Fig. 9. Peak bandwidth comparison (Baseline vs. STOR-ssd).

Fig. 10. Average 16MB download latency comparison (Baseline vs. STOR-ssd).

from the significant improvement of download bandwidth, for example, the peak upload
bandwidth of 4MB requests increases only by 2% (60.3MB/s vs. 59.2MB/s). The reason
STOR-ssd improves the upload bandwidth only slightly is that the Magnetic in our
experiments can achieve a similar peak read speed as SSD with a sufficiently large
request size and parallelism degree. In contrast, the download bandwidth is limited
by the relatively slow speed of Magnetic on the client. To further investigate the effect
of the client storage, we have also tested with ramfs on the Baseline client, which
stores data in memory and removes the storage bottleneck. We find that the peak
bandwidths can be further improved, but to a limited extent (77.2MB/s for uploading
and 80.3MB/s for downloading). In this case, the bandwidth is close to the limit of the
network bandwidth (82MB/s), indicating that the network becomes a bottleneck when
the client storage is highly capable.

The effect of the client storage on latency. Similar to bandwidth, we did not
observe significant effects of client storage on small requests and large upload requests.
For small requests, client I/O is the minority of the overall latency. In this case, client
storage is not a critical factor. For large upload requests, since Magnetic and SSD
have similar read speeds, the latencies are comparable; however, for large download
requests, STOR-ssd can substantially reduce the latency because STOR-ssd has sig-
nificantly advantageous write speed. For example, as shown in Figure 10, when the
parallelism degree is 1, STOR-ssd can reduce the latency by 24% (0.49s vs. 0.64s);
when the parallelism degree is 32, the latency can be reduced by 65% (7.7s vs. 21.8s).

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:16 B. Hou et al.

Table IV. Peak Upload Bandwidth Comparison (Baseline vs. MEM-minus)

1MB 4MB 16MB
Baseline 59.2MB/s 59.1MB/s 58.9MB/s

MEM-minus 58.9MB/s 58.7MB/s 58.7MB/s

Table V. Peak Download Bandwidth Comparison (Baseline vs. MEM-minus)

1MB 4MB 16MB
Baseline 26.7MB/s 28.9MB/s 28.9MB/s

MEM-minus 23.7MB/s 23.8MB/s 20.8MB/s

4.2.3. The Effect of Client Memory. Memory in the clients has two functions. First, mem-
ory is responsible for offering running space for parallel requests. Second, memory
acts as a buffer for uploading and downloading. In this section, we shrink the memory
of Baseline to investigate the performance differences. The only configuration differ-
ence between MEM-minus and Baseline is that Baseline has 7.5GB memory, while
MEM-minus has only 3.5GB.

Since small requests are not memory intensive, the effect of memory is trivial. We
only present the bandwidths of large requests. The peak upload bandwidth is basically
the same (see Table IV), while the download bandwidth dropped heavily (see Table V).
For example, on MEM-minus, the bandwidth of 16MB download is 20.81MB/s, which
is 28.0% lower than that on Baseline (28.90MB/s). That is because the write speed of
Magnetic is much lower than the read speed and thus more sensitive to the memory
space. Therefore, large download requests, especially those involving intensive writes
on the client, suffer more from limited memory.

4.2.4. Additional Remarks. To further assess the achievable performance of cloud stor-
age services, we configured a highly powerful Amazon EC2 client located in Oregon (a
c3.8xlarge instance) to largely remove the client-side bottleneck. This client is equipped
with 32 CPUs, 60GB memory, and 10Gbps networking. By repeating the same experi-
ments on this client with ramfs to access the cloud, we find that the maximum achiev-
able bandwidth for uploading and downloading can reach close to 470MB/s, which
demonstrates the great performance potential of cloud storage services and also clearly
shows the important role of clients’ capabilities in determining the user-perceivable
performance.

Summary: Clients’ capabilities have a strong impact on the end-to-end user-
perceivable performance of cloud storage. Based on our observations, CPU is important
to small and highly parallelized requests, while storage and memory have significant
effects on large requests. Understanding the effects of clients’ capabilities can provide
us guidance to properly reshape workloads (e.g., selecting a proper combination of par-
allelism degree and request size) to sufficiently exploit clients’ capabilities or set up
more reasonable hardware configurations (e.g., HDD vs. SSD) for target workloads.
This also indicates that using the same optimization policy across various clients may
not be desirable.

4.3. Effects of Geographical Distance

For cloud storage, the geographical distance between the client and the cloud deter-
mines the RTT, which accounts for a significant part of the observed I/O latency. The
RTT between the Baseline client and the cloud is 0.28ms, as both are in the same
Oregon data center. In contrast, the RTT between the GEO-Sydney client and the
cloud in Oregon is about 628 times longer (176ms). This section discusses the effects of
geographical distance.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:17

Fig. 11. Peak bandwidth comparison (Baseline vs. GEO-Sydney).

Fig. 12. Average 16MB upload latency comparison (Baseline vs. GEO-Sydney).

The effect of geo-distance on bandwidth. The effect of geographical distance
on the achievable peak bandwidth is weaker than expected. As shown in Figure 11,
the peak upload bandwidth of GEO-Sydney is close to that of Baseline. For example,
the peak upload bandwidth of 4MB requests of GEO-Sydney is only 10% lower than
that of Baseline (53.3MB/s vs. 59.2MB/s), while the peak download bandwidths of
4MB download requests are basically the same (29.3MB/s vs. 28.9MB/s). This means
that RTT is not a critical factor affecting the peak bandwidth, which is mostly due
to the Bandwidth-Delay Product (BDP) of the network and is also consistent with the
conclusion obtained by Bergen et al. [2011] that the perceived bandwidth from the
client is largely determined by the client’s network capabilities and the network
performance between the client and the cloud.

At the same time, it is also noticeable that the achievable peak bandwidth of small
requests (smaller than 1MB) is much lower with a long geo-distance. That is because a
long RTT needs a high parallelism degree to saturate the pipeline of parallel requests.
However, as analyzed in Section 4.2.1, small requests with high parallelism are more
CPU intensive; therefore, the CPU capability will become a critical bottleneck for the
purpose of sufficiently saturating the pipeline.

The effect of geo-distance on latency. As expected, we also find that the geo-
distance would significantly increase the latency, and its impact on latency makes the
client less sensitive to the negative effects caused by overparallelization to latency. As
shown in Figure 12, when the parallelism degree is 1, the average latency of 16MB
upload requests on GEO-Sydney is 2.1s, which is about 2.6 times of the counterpart on

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:18 B. Hou et al.

Baseline (0.8s); as the parallelism degree increases, the average latencies gradually get
closer; when the parallelism degree reaches 16, the average latencies are comparable
(4.3s vs. 4.2s). If we compare the two, GEO-Sydney shows a flatter curve than Baseline,
because a long RTT needs a high parallelism degree to saturate the pipeline, so the
negative effect of overparallelization appears later.

Additional remarks. We also set up another Amazon EC2 client in Europe,
GEO-Ireland, to test the effect of geographical distance. GEO-Ireland has the same
configurations as the Baseline client except the geographical location. The RTT
between the GEO-Ireland client and the cloud in Oregon is 128ms, which is much
higher than the RTT between the Baseline client and the cloud in Oregon (0.28ms).
We repeated the same experiments on GEO-Ireland, and the experimental results
have confirmed our findings shown earlier.

We further had a test on the Local-campus client, which has stronger capabilities
(four-core 3.2GHz CPU, 8GB memory, 910GB disk, 1000Mbps network) but is remote to
the Oregon data center. The observed peak bandwidths for uploading and downloading
can reach close to 100MB/s, which is much higher than that achieved on the Amazon
EC2 clients. This also shows that the user-perceived performance on cloud storage is
significantly affected by clients’ capabilities: the client with stronger capabilities can
achieve much better performance, even when the client is more distant to the cloud.

Summary: In this section, we investigate the effects of geographical distance. Our
experiments confirm the observation reported in prior work [Bergen et al. 2011] that
a long geographical distance does not necessarily affect the achievable bandwidth.
Besides, we also find that the negative effect of overparallelization may offset the
advantage of a short geographical distance. In other words, a client that is far away
from the cloud may achieve better performance with proper optimizations than a close
client.

4.4. Interference of Mixed Requests

In Section 4.1, we discussed the interference observed among homogeneous requests
(i.e., upload/download the objects of the same size). In this section, we further study
the interference among mixed requests. In particular, we study the effect of mixed
upload/download requests and mixed small/large requests.

In this set of experiments, we maintain two independent daemons to send different
requests, and collect their bandwidths and average latencies to observe their interfer-
ence. We call the daemon whose I/Os are being observed foreground daemon and call
the other background daemon.

In our experiments, we choose 4KB as the representative of small requests and
4MB as the representative of large requests. Both daemons have the same parallelism
degree in each run of the experiments. The parallelism degree ranges from 1 to 32.
Considering the possible variance caused by thread competition, we repeat each run of
the experiments 10 times.

4.4.1. The Interference of Uploading and Downloading. To observe the interference of small
upload requests, we set one daemon to send 4KB upload requests and the other to send
4KB download requests; similarly, we set one daemon to run 4MB upload requests and
the other to run 4MB download requests.

The interference of uploading and downloading to bandwidth. For small
requests, as shown in Figure 13, the bandwidth of both upload and download requests
can still increase, but the increasing rate is much slower than that without interference.
Since both of their parallelism degrees increase, their bandwidth can be improved
before the pipeline is sufficiently saturated. Due to the competition, the increased rate
is relatively slower. Interestingly, small download requests can obtain more bandwidth

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:19

Fig. 13. Bandwidths of mixed upload/download (4KB).

Table VI. Mixed Versus Nonmixed Upload/Download Bandwidths (4MB)

Mixed Nonmixed
Upload 29.8MB/s 58.91MB/s

Download 18.2MB/s 28.9MB/s

when competing with small upload requests. The bandwidth of 4KB upload requests
stops increasing at parallelism degree 8 when being interfered with by 4KB download
requests of parallelism degree 8, as shown in Figure 13(a), while the bandwidth of 4KB
download requests can continuously increase, as shown in Figure 13(b). That is because
the average latency of downloading requests is lower than that of uploading requests,
so that the clients can finish more downloading requests from the mixed requests. This
means that small upload requests are more sensitive to the interference.

For large requests, the bandwidth of both upload requests and download requests
decreases dramatically. The peak bandwidth of both upload and download requests
drops by 50%. The peak bandwidth of the mixed requests is much lower than the
bandwidth of upload requests without interference. For example, as shown in Table VI,
the bandwidth of 4MB uploading requests is 58.91MB/s without interference, while
the total peak bandwidth of the mixed requests is 48MB/s (the bandwidth of upload
requests is 29.8MB/s, and the bandwidth of download requests is 18.2MB/s), which is
about 20% lower than the upload bandwidth without interference.

The bandwidth of download requests decreases dramatically even though the interfer-
ence parallelism degree is low. For example, when the interference parallelism degree
is 1, the bandwidth of download requests reduces by 50% (from 20MB/s to 10.7MB/s),
while the upload bandwidth drops slightly (from 15.5MB/s to 13.5MB/s) under the
same condition. This should be caused by the competition of client I/O resources. Since
the write speed of Magnetic is much slower than the read speed, the downloads, espe-
cially those involving intensive write operations on the client, are more sensitive to the
interference.

The interference of uploading and downloading to latency. With regard to the
latency, when the interference parallelism degree is high, the average latency of both
upload and download requests increases heavily, especially for mixed upload/download
requests of large size. That is because the competition between the large requests is
more intensive for client resources, which is consistent with our prior observations (see
Section 4.1.2).

4.4.2. Interference of Large and Small Requests. To observe the interference among mixed-
size upload requests, we set one daemon to run 4KB upload requests and the other one

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:20 B. Hou et al.

Fig. 14. Bandwidths of mixed 4KB/4MB upload.

Fig. 15. Latencies of mixed 4KB/4MB upload.

to run 4MB upload requests; similarly, we set one daemon to run 4MB upload requests
and the other to run 4KB upload requests to observe the interference among mixed-size
upload requests. For brevity, we only present upload results here. Download requests
show a similar trend.

The interference of small requests and large requests to the bandwidth.
Large requests are more sensitive to the interference. For brevity, we only present the
results of mixed upload requests. As shown in Figure 14(b), the bandwidth of large
requests drops heavily when the interference parallelism is high. When the interference
degree is low (<8), the bandwidth of 4MB upload requests can still increase, although
the increase rate is much slower than that without upload interference. However,
when the interference parallelism degree is high (>=8), the bandwidth of 4MB upload
requests drops linearly. By contrast, as shown in Figure 14(a), the bandwidth of 4KB
upload requests can still increase, although the increase rate is decreasing. The major
reason is that small requests are CPU intensive, since small requests occupy a lot of
CPU resources, and they have many chances to be scheduled and quickly completed
during the competition. This takes away CPU resources from the large requests, which
need more time to complete, and results in the observed significant bandwidth decrease.

The interference of small requests and large requests to latency. As shown
in Figure 15, the average latencies of both small requests and large requests increase
obviously when the parallelism degree and interference parallelism degree are high.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:21

In particular, the average latency of large requests is also significantly affected by the
interference of small requests, but not as significantly as the bandwidth is affected.

Summary: In this section, we investigate the interference among mixed requests
on the Baseline client. We have observed two main phenomena: (1) large requests
suffer more performance loss when being mixed with small requests, and (2) download
requests are more sensitive to the competition of the corunning upload requests. The
former is mostly caused by the competition of CPU resources, while the latter is mainly
caused by the fact that the disk on the Baseline client in this case is a bottleneck and has
faster read speed than write speed. Therefore, when client storage is not the bottleneck,
the second phenomenon does not necessarily hold true. We have confirmed this by using
ramfs on the Baseline client to repeat the mixed upload and download requests of 4MB
and find that the second phenomenon is not obvious. This means that the interference
among mixed requests is also client dependent.

4.5. Discussion

Through a comprehensive study on Amazon S3, we have investigated the I/O perfor-
mance behaviors from a client’s perspective. Besides common observations, we have
also acquired several interesting and useful findings that have not been paid sufficient
attention to in prior studies. In particular, we find that a proper combination of par-
allelism degree and request size helps fully exploit the great performance potential of
cloud storage and optimize user experiences.

Our measurement work has several limitations. First, our current study is based
on traditional clients, such as PCs and workstations. Ultra-mobile clients, such as
smartphones and tablets, have very distinct characteristics, such as relatively weaker
CPU, wireless networking, and flash-based storage. As we observed in the experiments,
clients’ properties are important and could lead to different performance perceived on
the client side. Thus, we may have different observations on these mobile clients, which
is worth a further study in the future. Second, the effect of clients’ capabilities studied
in this article focus more on CPU, memory, and storage. The network-related effect
is mostly reflected in our study on geo-distance. More detailed analysis on the effect
of networking capability can be found in prior work [Ou et al. 2015]. Third, we use
Amazon S3 as our cloud storage service target for study. Although this work focuses
more on performance analysis from the client’s perspective, extending to other cloud
storage services could be further studied in our future work.

5. DETERMINING PROPER COMBINATION OF PARALLELISM AND REQUEST SIZE

We have observed the tradeoff between parallelism and request size and their effects
earlier. In this section, we make an attempt to identify a proper combination of par-
allelism degree and request size to find a “near-optimal” combination. Specifically, we
propose a sampling- and inference-based approach.

5.1. Key Idea

The key idea is to leverage the known performance data of sample combinations (par-
allelism degree and request size) to make a speculation on proper combinations in a
broader range, based on our understanding on the effects of parallelism and request
size. This approach is primarily composed of two steps:

Sampling. We first assess the achievable performance for a set of sample combina-
tions as our reference points for our speculation. Here the sample combinations refer
to the combinations of typical request sizes (e.g., 16KB, 64KB, 256KB, 1MB, and 4MB)
and parallelism degrees (e.g., from one job to 64 jobs). The performance data with differ-
ent combinations can be obtained by purposefully running a simple test (as described
in Section 3.3). We can also leverage some hints from the workload characteristics to

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:22 B. Hou et al.

Fig. 16. Sampling for uploading 4MB object. Fig. 17. Combinations for uploading 256KB object.

narrow down the sampling space and reduce the cost. For example, since web services
are dominated by small objects, we can focus on small request sizes (e.g., 1KB, 4KB,
16KB, and 64KB) accordingly. We can also collect performance data by observing online
traffic during runtime. Based on the obtained sample data, a profile can be created for
the client and even shared among clients working in a similar environment.

Inferring. Based on the sample data, we can make a speculation and infer the
proper combinations in a wider range, even without all test data available. Consider a
simple example: if it is known that the combinations 4MB×4 and 1MB×8 can achieve
the maximum uploading bandwidth on the client, we can speculate that the proper
parallelism degree for 2MB is likely to be between 4 and 8, since it is too aggressive
to select 8 and too conservative to select 4. Thus, a compromised choice is likely to be
6 (the average of 4 and 8). The rationale behind such a simple inference is that large
requests are better to be combined with small parallelism degrees. In more complicated
working scenarios, we can make the inference based on the performance curves of the
sampled combinations.

For illustration, we present how to use this approach to achieve two different opti-
mization goals, high bandwidth and low latency.

5.2. Bandwidth Optimization

The first optimization goal is to improve the overall bandwidth. There are two possible
ways to enhance bandwidth: (1) chunking large objects into smaller ones to create
more opportunities for parallelization or (2) merging small objects into larger ones to
increase request size. Since the process of finding a proper combination for these two
goals is similar, we take the first as an example.

For chunking, it is relatively easy to find proper combinations if the objects are large
enough. On our testing platform (the Baseline client), if we upload a 256MB object,
as shown in Figure 1(a), 4MB×4, 1MB×8, and 256KB×32 are regarded as “good”
combinations, because they can achieve the peak bandwidth on the client.

It is more challenging when the objects are not large enough for creating combina-
tions that can lead to the peak bandwidths. For such cases, the possible parallelism
degrees are limited in a small range. For example, for uploading a 4MB object, the
selectable parallelism degrees are limited: 1 (for 4MB chunks), 4 (for 1MB chunks), 16
(for 256KB chunks), and 64 (for 64KB chunks). As shown in Figure 16, 256KB×16 can
achieve the highest bandwidth. Similarly, for uploading a 256KB object, 16KB×16 is
the proper combination.

Evaluation. Figure 17 shows the bandwidth comparison of different combina-
tions. Among these combinations, 256KB×1, 64KB×4, and 16KB×16 are sampling

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:23

Fig. 18. An example of selecting a proper parallelism degree for uploading a set of 256KB objects. In
Figure 18(a), the pair of numbers in parentheses presents the parallelism degree and the latency: the
first number refers to the parallelism degree and the other refers to the latency in seconds. Similarly, in
Figure 18(b), the first number in the parentheses presents the parallelism degree and the other presents
the bandwidth in MB/s. In this example, the samples are the combinations of request size (256KB) and
parallelism degrees (1, 2, 4, 8, 16, and 32).

combinations shown in Figure 16; 128KB×2, 32KB×8, 8KB×32, and 4KB×64 are ad-
ditional tested combinations. From the bandwidth growing tendency of different com-
binations, the combination of 16KB×16 is a proper selection for uploading a 256KB
object, which confirms our inference.

5.3. Latency Optimization

Another optimization goal is latency. Some applications may be in need of improving
throughput but have a low tolerance to latency increase. We take the case of uploading
a set of 256KB objects as an example to explain how to use the sampling- and inference-
based approach to decide a proper parallelism degree.

The latency and bandwidth achieved by the sample combinations (256KB with par-
allelism degrees ranging from 1 to 32) are shown in Figure 18. With a single thread, the
average latency of uploading 256KB objects is 0.078s, and the bandwidth is 3.2MB/s.
If the application prefers to minimize the latency increase caused by parallelization,
the parallelism degree 8 may be a proper choice (see Figure 18(a)), leading to a pos-
sibly maximum bandwidth of 25MB/s (see Figure 18(b)). If the applications are more
tolerant to latency increase, a higher bandwidth can be achieved. For example, if the
average latency is allowed to be increased to 0.1s, shown in Figure 18(a), the paral-
lelism degree of 21 jobs can be selected, and the corresponding bandwidth is 48.5MB/s
(see Figure 18(b)).

Evaluation. To evaluate the accuracy of our inference on the combination of
256KB×21, using our test tool, we conduct an experiment to measure the performance
of the combination. In the experiment, 21 threads are created to upload 20,000 ob-
jects of 256KB in parallel. We repeat the experiment 5 times. The comparison of the
inferred performance and the measured performance is shown in Figure 19. As mea-
sured, the average latency is 0.1002 second with the standard error of 0.00606 second,
and the bandwidth is 50.11MB/s with the standard error of 2.92MB/s. Comparatively,
our inference (0.1s for average latency and 48.5 MB/s for bandwidth) is quite accurate.

5.4. Discussion

We have shown how to adopt the sampling- and inference-based method to optimize
for two different goals, latency and bandwidth. In fact, it is also possible to be used to

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:24 B. Hou et al.

Fig. 19. The evaluation of an inferred combination 256KB×21. The Inferred bar presents the inferred
value of the combination. The Measured bar presents the measured results with a range.

estimate a proper combination by using the profile collected from one client for another.
For example, if we have the sample combination that 8 is the proper parallelism for
16KB on the client with 2 units of CPU capability, we can speculate that a proper
combination for the client with 4 units of CPU capability is likely to be 16KB×16,
since the CPU resource is doubled. We can also speculate that the proper parallelism
degree for 16KB should not be smaller than 16 for the client that is more distant from
the cloud, since a long distance requires more aggressive parallelization. Similarly, our
observations on the interference among mixed requests also could provide us hints to
infer a proper combination from one case to another.

We would also like to point out here that this sampling- and inference-based approach
cannot warrant a perfect estimation for finding an optimal combination; however, it
shows that there exists a feasible method to make a reasonable speculation based
on the data that we have. In practice, client-side applications also need to consider
other factors, such as caching and prefetching on the client side, which may affect the
accuracy and make the inference more complicated to make a proper decision. We will
further present our case studies on cloud-based applications in Section 6.

6. CASE STUDIES

In this section, we present a set of case studies in typical application scenarios to
show the benefits and challenges of exploiting the I/O characteristics of cloud storage
in practice. It is worth noting that our goal is not to provide a complete design of
solutions to address the specific problems but to show via these case studies how
the I/O characteristics of cloud storage may offer new opportunities to deal with the
performance issues of cloud-based storage systems. We carefully select three data-
intensive applications running in the scenarios of cloud storage to investigate how to
exploit the I/O characteristics of cloud storage.

Applications: The applications we select are grep, tar, and filesystem. From the
perspective of performance, the first two applications are more bandwidth oriented for
achieving a short overall execution time, while the last requires low average request
latencies. By investigating these cloud-based applications, we focus on studying how
to properly take advantage of chunking and parallelization to optimize classic client-
side techniques including informed prefetching, data synchronization, and caching and
prefetching for file systems with the workloads collected from the real world.

Platform: In these case studies, we use Amazon S3 (in Oregon) as the cloud storage
services and a workstation on our campus (in Louisiana) as the client. The client is a

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:25

Fig. 20. Execution time of grep with different parallelism degrees.

PC equipped with a two-core 3.3GHz Intel Core i5 CPU, 8GB memory, and a 450GB
disk drive, and installed with Ubuntu 12.04.5 LTS and Ext4 file system.

6.1. Parallelizing Informed Prefetching

Informed prefetching refers to the prefetching method that is based on hints given
by the applications. Since the to-be-accessed dataset is informed in advance, we can
sufficiently parallelize the downloading process to efficiently load the data from the
cloud to the client.

To investigate the performance of parallelizing cloud storage I/Os for informed
prefetching, we choose grep, one of the most typical and common applications that can
benefit from informed prefetching, to showcase the effect of parallelizing prefetch I/Os.
The function of grep is to search for a certain string in a dataset (a file or a directory)
that is explicitly given as a parameter. Specifically in the scenario of cloud storage,
since the cloud storage providers generally do not support content-based searching
APIs in the cloud servers, the data to be searched need to be downloaded to the client
first. Once a grep application is launched, we can get the path of the dataset from the
command parameters and thus download the dataset in parallel if necessary.

In our experiments, we use grep to search for the string “prefetch” in the directory
“linux-4.3/fs,” which is a subdirectory of the source code tree of the Linux kernel
(version 4.3) stored in the cloud. The execution time of grep with different parallelism
degrees (see Figure 20) shows that via sufficiently parallelizing the downloading pro-
cesses, the overall execution time can be reduced up to 94.65% (277.51s vs. 14.86s). This
is in accordance with our expectation. Since cloud storage is parallelization friendly
and the average size of files in the dataset is small (18.44KB), parallelizing the down-
loading requests can significantly improve the bandwidth and thus reduce the overall
downloading time. Comparatively, the time taken by the grep application to complete
the searching process after the dataset is loaded to the client is trivial (about 0.05s).

We also note that when the parallelism degree is excessively high (e.g., 128), the
execution time increases by 18.2% compared to the lowest time (17.56s vs. 14.86s).
However, the execution time with overparallelization is still much lower than that
under insufficient parallelization. For example, the execution time with parallelism
degree 128 is 24.3% lower than that with parallelism degree 32 (17.56s vs. 23.59s)
and 93.7% lower than that with a single thread (17.56s vs. 277.51s). Therefore, for
applications like grep aiming at high bandwidth, a relatively high parallelism degree is
acceptable. To achieve the optimal parallelism degree, we can also analyze the average
file size of the dataset before deciding the parallelism degree. For example, on our
client, for a small file size (e.g., 4KB), we may use a relatively high parallelism (e.g., 64);

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:26 B. Hou et al.

Fig. 21. Execution time of tar (Trace 1). Fig. 22. Execution time of tar (Trace 2).

for a large file size (e.g., 2MB), the parallelism degree can be relatively low (e.g., 8). In
the meantime, the overhead of analyzing the dataset that is related to the metadata
operations (e.g., HEAD) to the cloud should not be ignored. Specifically in this case, it
takes about 1.36s to get the metadata of the files and calculate the average file size,
which is not significant but deserves our attention.

6.2. Parallelizing Synchronization

For many cloud-based applications, the data is maintained in a local directory called
the “syncing directory” and the client periodically syncs local data to the cloud. In
such applications, the most frequent operation is to upload data from the client to the
cloud, which is generally called “sync.” Therefore, the efficiency of sync is critical to
user experiences. Let us consider a typical use case: when we execute a tar command
to unpack a compressed file (e.g., “.tar,” “.tgz,” and “.zip”) in the syncing directory of
a cloud storage application (e.g., Google Drive, Dropbox, and OneDrive), a bunch of
unpacked files need to be uploaded to the cloud. Similar to our parallelization for
informed prefetching, parallelizing the uploading process would dramatically improve
the bandwidth and thus reduce the overall execution time.

To further illustrate this, we collect two practical traces of tar applications: Trace 1 is
to unpack a “.tar” file that contains 5,233 text documents and images of a latex project;
Trace 2 is to unpack a “.tar” file that contains 100 “.pdf” files of typical conferences and
journals. Via replaying these two traces in the syncing directory, we can investigate
the effects of parallelizing sync operations.

The overall execution time of Trace 1 (Figure 21) shows that as the parallelism degree
increases, the overall execution time continues to decrease. In contrast to working with
a single thread, the overall execution time decreases by 98.2% (92.71s vs. 1002.85s).
That is because the average size of the documents of the latex project in our experiments
is rather small (60.5KB), and parallelizing the uploading process can achieve much
higher bandwidth, and thus significantly lowers the overall execution time. Similar to
parallelizing the informed prefetching process, the performance degradation caused by
overparallelization in this case is not significant.

The overall execution time of Trace 2 with different parallelism degrees is shown
in Figure 22. When the parallelism degree is low (<=8), the overall execution time
decreases significantly. For example, the execution time with parallelism degree 8 de-
creases by 39.5% (70.29s vs. 116.13s). However, different from the results of Trace 1,
the overall execution time of Trace 2 increases linearly when the parallelism degree
exceeds 8 (see Figure 22). That is mostly because the average file size in Trace 2 is rela-
tively large (2.64MB). Thus, the performance degradation caused by overparallelization
is significant.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:27

The results of Trace 1 and Trace 2 demonstrate that parallelization is the key to
improving the sync performance; however, when the request size is relatively large,
the negative effects caused by overparallelization should be given sufficient attention.
In addition to the performance degradation, the waste of the client resources should
not be ignored either. For example, the CPU utilization with parallelism degree 64 is
61% higher than that with parallelism degree 2 (100% vs. 62%); however, the execution
time with parallelism degree 64 is 17% higher than that with parallelism degree 2
(116.13s vs. 98.58s). This means overparallelization consumes more client resources
but results in worse performance.

Similar to parallelizing informed prefetching, analyzing the average file size of the
dataset before deciding the parallelism degree is a feasible way to avoid overparal-
lelization. However, comparatively, the cost of analyzing the dataset for sync is trivial.
That is because the data to be uploaded resides in the local client and can be traversed
and analyzed directly without communicating with the remote repository on the cloud
like the grep application. In this case, it only takes several milliseconds to analyze the
dataset (Trace 1 and Trace 2), which is negligible to the overall execution time.

6.3. Caching and Prefetching for File Systems

In cloud storage, client-side caching and prefetching are two basic schemes for enhanc-
ing the user experience. In this case study, we make attempts to show that cloud storage
I/O performance could be affected by optimizing caching and prefetching. Specifically,
we will discuss two key techniques, chunking and parallelization.

6.3.1. Experimental Setup. To evaluate the effects of chunking and parallelized prefetch-
ing for cloud-based file systems, we build an emulator to implement the basic read/write
operations of a typical cloud-based file system with disk caching on the client. In the
emulator, we focus on two requests: read and write. Each request has three param-
eters: file_id, the unique ID of the target file; offset, the offset of the first byte of
requested data in the file; and length, the length of the requested data.

Upon each request, the simulator works as follows: (1) it first checks the file_id of
the object in the client cache; (2) upon a cache hit, it returns the requested data by
accessing the cached object; and (3) upon a cache miss, it first downloads the object from
the cloud to the client disk cache, and then returns the requested data by accessing the
object in local cache.

The local cache is managed by the standard LRU cache replacement algorithm.
Similar to the Linux write-back policy, the emulator uploads the dirty files that have
resided on the local cache for more than 30 seconds periodically (every 5 seconds) by a
background daemon. The emulator also collects the latency of each request (end-to-end
completion time) and the number of cache hits. After all the requests are completed, it
reports the average access latency and the cache hit ratio.

To drive this experiment, we use an object-based trace by converting a segment of
an NFS trace, which is a mix of email and research workload collected at Harvard
University [Ellard et al. 2003]. We extract the object sizes and the sequence of read
and write requests from the trace. The total volume of referenced data is 4.8GB, the
average file size is 12.9MB, and the distribution of file sizes is shown in Figure 23.

6.3.2. Proper Chunk Size for Caching. Chunking is an important technique used in cloud
storage. In S3Backer, for example, the space of the cloud-based block driver is formatted
with a fixed block size that can be defined by the user [S3Backer 2015]. The choice of
chunk sizes can affect caching performance: the smaller the chunk is, the less a cache
miss cost would be, but the more cloud I/Os could be generated.

Although it is difficult to accurately determine the optimal chunk size, our findings
about the effect of chunk size on the performance of cloud storage can guide us to

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:28 B. Hou et al.

Fig. 23. CDF of file sizes.

Fig. 24. Download bandwidths of different chunk sizes with a single thread.

roughly choose a proper, if not optimal, chunk size. Specifically, we aim to identify a
relatively small chunk size for reaching an approximately maximum bandwidth by
making a reasonable tradeoff between the cache hit ratio and cache miss penalty.

We first examine the bandwidth of typical chunk sizes (from 1KB to 16MB) with a
single thread. Figure 24 shows that when the chunk size exceeds 4MB, the download
bandwidth is close to the maximum achievable bandwidth with a single thread. Based
on this, we speculate that the proper chunk size is possibly around 4MB. This is for two
reasons. First, further increasing the chunk size over 4MB (e.g., 8MB or 16MB) cannot
deliver a higher bandwidth. For example, upon a cache miss of 8MB data, downloading
one 8MB chunk takes almost an equal amount of time as downloading two 4MB chunks,
while using 8MB chunks increases the risk of downloading irrelevant data. Second, if
the chosen chunk size is excessively smaller than 4MB (e.g., 64KB or 1MB), the cache
may suffer from a high cache miss ratio and cause too many I/Os.

To verify this speculation, we adopt the standard LRU algorithm with asynchronous
writeback (for the purpose of generality). Every 30 seconds, we flush dirty data back to
the cloud. The cache size is set as 200MB disk space. Besides a 4MB chunk size, for a
comparison, we choose two smaller chunk sizes, 64KB and 1MB, and two larger chunk
sizes, 8MB and 16MB, to study the effect of the chunk sizes.

The average access latencies with different chunk sizes are shown as Figure 25.
It clearly shows that the lowest average read/write latencies are achieved at 4MB,
which confirms our speculation. When the chunk size increases from 64KB to 4MB,
the average read latency decreases by 47.3% (from 95.2ms to 50.2ms), and the average
write latency decreases by 40.4% (from 109.9ms to 65.5ms). This benefit is due to the
increase of cache hit ratio: The read hit ratio increases from 77.8% to 98.4%, and the

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:29

Fig. 25. Average latencies with different chunking. Fig. 26. Hit ratios with different chunking.

write hit ratio increases from 88.9% to 99.4% (see Figure 26). This is mostly because
using a relatively large chunk size allows preloading the useful data, and consequently
improves the cache hit ratio and the overall performance. However, when the chunk
size exceeds a certain threshold, further increasing chunk size may cause undesirable
negative effects. Figure 26 shows that the cache hit ratios increase slightly with a large
chunk size. The increased cache miss penalty with a large chunk size is responsible for
the slowdown. Specifically, it takes 4s to load a 4MB chunk, while it needs 14.2s for
a 16MB chunk. Consequently, the average access latencies increase. Additionally, the
interference among uploading and downloading threads may also increase the average
access latencies in the case of overparallelization (i.e., large request size with high
parallelism degree).

The previous analysis has shown how to determine the proper chunk size for a
certain client. Specifically, 4MB is the proper chunk size on our client for the testing
workload. For the workloads with weak spatial locality, the proper chunk size should
be correspondingly smaller. In general, an excessively large chunk size is not desirable,
as it increases the risk of unnecessary overhead with no extra benefit.

6.3.3. Proper Parallelization for Prefetching. Prefetching is another widely used technique
in cloud storage clients. Since objects can be downloaded (prefetched) in parallel, a
proper parallelism degree can enhance performance, but overparallelization raises the
risk of misprefetching and resource waste.

In order to determine a proper parallelism degree for a certain chunk size, it is
important to ensure that on-demand fetching would not be significantly affected by
prefetching. To avoid a significant increase of average fetching latencies, we can perform
an exhaustive search on the client, which is feasible but inefficient. Based on our
findings, in fact, we can greatly simplify the process of identifying a proper parallelism
degree. To show how to achieve this, we take the chunk sizes (64KB, 1MB, and 4MB)
as examples. We may first choose a 4MB chunk with parallelism degree 1 and then
gradually increase the parallelism degree step by step (2, 4, and 8) for testing. For
smaller chunk sizes, we only need to test from a larger parallelism degree, since small
chunks are more parallelism friendly and it is unlikely to achieve higher performance
at a low parallelism degree as large chunks. Figure 27 gives such an example: four
parallel jobs for 4MB, eight parallel jobs for 1MB, and 16 parallel jobs for 64KB are the
best choices.

To illustrate the actual effect of parallelization to prefetching, we implement an
adaptive prefetching algorithm in our emulator. We adopt the history-based prefetching
window to determine the prefetching granularity, which is similar to the file prefetching
scheme used in the Linux kernel. A prefetching window is maintained to estimate the
best prefetching degree. The initial window size is 0 and enlarged based on the detected
sequentiality of observed accesses. Assuming chunk n of an object is requested, if chunk
n-i, chunk n-i+1, . . . , and chunk n-1 (1≤i≤n) are detected to be sequentially accessed,

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:30 B. Hou et al.

Fig. 27. Average download latencies with different parallelism degrees.

Fig. 28. Average read latency comparison. Fig. 29. Average write latency comparison.

Table VII. Average Latency Reduction by Prefetching

Chunk Size Read Latency Reduction Write Latency Reduction
64KB 70.4% 31.1%
1MB 56.9% 24.6%
4MB 22.6% −1.2%

the size of the prefetching window grows to 2i−1. We set the maximum prefetching
window size (i.e., parallelism degree of prefetching) for all chunk sizes (i.e., 64KB,
1MB, 4MB) to 8.

The performance comparisons of no-prefetching and prefetching are shown in
Figure 28 and Figure 29. We can see that, with prefetching, the optimal chunk size
is 1MB. Obviously, a small chunk size benefits more from the prefetching (as we see
in the prior sections, small objects benefit more from parallelism), and the relative
benefits decrease as the chunk size increases (see Table VII).

Surprisingly, with prefetching, the average write latency of 4MB increases by 1.2%.
This means that the prefetching granularity in our experiment is so aggressive that
the negative effects of prefetching outweigh the benefits. The negative effects may
result from two factors. First, a lot of unnecessary data is prefetched so that the cache
efficiency is reduced, leading to a lower cache hit ratio. Second, the competition among
parallel prefetching threads may increase the average downloading latency (i.e., the
average penalty of cache miss). Specifically for the case of the average write latency
of 4MB, the performance degradation is mainly caused by the second factor since the
cache hit ratio remains high (close to 98.7%). As a rule of thumb, we should set a small

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:31

prefetching degree for large chunk sizes (e.g., 4MB) to avoid the intensive competitions
among the parallelized downloading threads. For example, we can limit the growing
speed of the prefetching window or cap the maximum prefetching window size. On the
contrary, the prefetching granularity of small chunk sizes (e.g., 64KB) can be more
aggressive. This also confirms our speculation about the proper parallelism degrees for
different chunk sizes (i.e., 16 for 64KB chunks, 4 for 4MB chunks).

In summary, our case studies further show that the real-world implementation of
client-side management should carefully consider the factors that we have studied in
the prior sections, particularly parallelism degree and request size. Other issues, such
as client capabilities and geo-distances, would also inevitably further complicate the
design consideration.

7. SYSTEM IMPLICATIONS

With these experimental observations, we are now in a position to present several
important system implications. This section also provides an executive summary of
our answers to the questions we asked earlier.

Appropriately combining request size and parallelism degree can maximize
the achievable performance. This is sometimes a tradeoff between the two factors.
By combining the chunking/bundling methods with parallelizing I/Os, the client can
enhance bandwidth in two different ways: we can increase the parallelism degree for
small requests or increase the request size at low parallelism degree. Both can achieve
comparable bandwidth, but interestingly, we also find that compared to increasing par-
allelism degree, increasing the request size can achieve another side benefit: reduced
CPU utilization. This means that for some weak-CPU platforms, such as mobile sys-
tems, it is more favorable to create large requests with a low parallelism degree. On the
other hand, we should also consider several related side effects of bundling/batching
small requests. For instance, if part of a bundled/batched request failed during the
transmission, the whole request would have to be retransmitted. Also, it is difficult
to pack a bunch of small requests to different buckets or data centers together. In
contrast, parallelizing small requests is easier and more flexible. Therefore, there is
no clear winner between the two possible optimization methods (i.e., creating large re-
quests and parallelizing small requests). An optimal combination may vary from client
to client in terms of clients’ capabilities and geographical distance, but the sampling-
and inference-based method helps make a proper decision (see Section 5).

The client’s capability has a strong impact on the perceived cloud storage
I/O performance. CPU, memory, and storage are the three most critical components
determining a client’s capability. Among the three, CPU plays the most important role
in parallelizing small requests, while memory and storage are critical to large requests,
especially large download requests. A direct implication is that for optimizing the cloud
storage performance, we must also distinguish the capabilities of clients, and one policy
will not be effective for all clients. Due to the cross-platform advantage, many personal
cloud storage applications can run on multiple platforms (from PCs to smartphones).
Such distinction among clients will inevitably affect our optimization policies. For
example, for a mobile client with a weak CPU, we should avoid segmenting objects into
excessively small chunks, since it is unable to handle a large number of parallel I/Os,
although this is not a constraint for a PC client. Given the diversity of cloud storage
clients, we believe that a single optimization policy is unlikely to succeed across all
clients.

Geographical distance between the client and the cloud plays an important
role in cloud storage I/Os. For cloud storage, the geographical distance determines
the RTT. We find that a long RTT has distinct effects on bandwidth and latency. In
particular, with a long RTT, we still can achieve a similar peak bandwidth as the case

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:32 B. Hou et al.

of a short RTT, but the cloud I/O latency is significantly higher. The implications are
twofold. First, to tackle the long latency issues, it is a must-have to use effective caching
and prefetching for latency-sensitive applications. Second, for the clients far from the
cloud, we should proactively adopt large request sizes and high parallelism degrees to
fully saturate the pipeline and exploit available bandwidth as much as we can. In other
words, by sufficiently exploiting the I/O characteristics of cloud storage, if bandwidth is
the main requirement (e.g., video streaming), choosing a relatively distant data center
of the cloud storage is a viable option and a high bandwidth is still achievable with
appropriate client-side optimizations.

Parallel cloud storage I/Os generated by a client may interfere with each
other, and the effect is workload and client dependent. We find that large re-
quests and download requests are particularly sensitive to the interference caused
by their corunners, small requests (competing for client CPU resources), and upload
requests (competing for client storage bandwidth), respectively. This implies that a
scheduling policy for cloud storage I/Os is needed to avoid intensive interference, par-
ticularly when client CPU or client storage is the bottleneck. We may batch and paral-
lelize requests sharing similar patterns, rather than randomly dispatch requests, just
like some local I/O schedulers. Such a mixed effect also has implications for the client
to choose caching or syncing for optimizations. Most personal cloud storage clients
adopt the syncing approach. Since the client maintains a complete copy of the data,
and only changes are uploaded to the cloud periodically in batches, the traffic pattern
is relatively simple and the interference among mixed requests is expected to be low.
In contrast, for a caching approach, cache misses will trigger download requests, which
may conflict with the upload requests generated by periodic flushing, and this will lead
to the interference. Also, if a cloud-based system adopts an adaptive chunking policy,
the interference between small and large requests should also be considered.

In essence, cloud storage represents a drastically different storage model for its di-
verse clients, network-based I/O connection, and massively parallelized storage struc-
ture. Our observations and analysis strongly indicate that fully exploiting the potential
of cloud storage demands careful consideration of various factors.

8. RELATED WORK

Most prior studies focus on addressing various issues of cloud storage, including per-
formance, reliability, and security (e.g., Abu-Libdeh et al. [2010], Bonvin et al. [2010],
Brad et al. [2011], Chen et al. [2014], Cui et al. [2015], Ford et al. [2010], Gulati et al.
[2011], Higgins et al. [2012], Hu et al. [2012], Li et al. [2013], and Zhang et al. [2011,
2014]). Some other work studies the design of cloud-based file systems to better inte-
grate cloud storage into current storage systems (e.g., Bessani et al. [2014], Dong et al.
[2011], and Vrable et al. [2012]). Our work is orthogonal to these studies and focuses
on understanding the behaviors of cloud storage from the client’s perspective.

Our work is related to several prior measurement works on cloud storage. Li et al.
[2010] compared the performance of major cloud providers: Amazon AWS, Google App-
Engine, and Rackspace CloudServers. Bermudez et al. [2013] presented a characteri-
zation of Amazon’s Web Services (AWS). Ou et al. [2015] compared a CloudFuse-based
filesystem for OpenStack Swift, an open-source cloud storage, with two other IP-based
storage, NFS and iSCSI. Cooper et al. [2010] benchmarked cloud storage systems
with YCSB. Meng et al. [2010] presented a benchmarking work on cloud-based data
management systems to evaluate the effects of different implementations on cloud
storage. Bocchi et al. [2014] presented a comprehensive performance comparison of
four cloud storage services, namely, Amazon S3, Amazon Glacier, Windows Azure Blob,
and Rackspace Cloud Files, by using generic workloads. He et al. [2013] investigated

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:33

how modern web services use Amazon EC2 and Windows Azure as their infrastructure
and tried to identify ways to improve the deployments of the cloud-based services.

These prior studies investigate the performance of cloud storage mostly from the
perspective of the server side. Our work, unlike these server-oriented studies, focuses
on studying the role of clients in the observed end-to-end cloud storage performance. In
addition to some common observations, such as the effect of parallelism on achievable
bandwidth [Ou et al. 2015], we have made findings specifically from a client’s perspec-
tive. For example, in our preliminary study [Hou et al. 2016], we have already found
that a reasonable tradeoff could be made between parallelism degree and request size
for achieving the desirable performance in terms of bandwidth and latency. In this
article, we further present a sampling- and inference-based approach to demonstrate
that it is feasible to identify a proper combination of parallelism degree and request
size. We have also studied the important factors affecting the parallelization of cloud
storage I/Os, such as the interference among corunning cloud storage I/Os. As for the
effect of geographical distance, we also show that the advantage of a short geo-distance
for accessing the cloud may be offset by the negative effect caused by overparalleliza-
tion. Additionally, the client’s capabilities should not be ignored when deciding specific
optimization policies, and proper optimization on the client side can be much more
efficient and effective to improve user experiences than selecting a faster or a closer
(maybe more expensive) cloud storage provider. Our case studies, such as paralleliz-
ing the informed prefetching and synchronization, further illustrate possible ways of
leveraging parallelization for various system optimization purposes.

Several other measurement works studied the cloud storage client applications
(e.g., Drago et al. [2013, 2014, 2012], Hu et al. [2010], Mager et al. [2012], Wang
et al. [2012], Gracia-Tinedo et al. [2013], and Bocchi et al. [2015]). These studies fo-
cus on measuring the performance of client applications of cloud storage, which are
mostly proprietary products, such as Dropbox, Wuala, Google Drive, Box, SugarSync,
and so forth. Different from these studies, our goal is not to test a specific client ap-
plication; rather, we aim to reveal the key factors affecting the data exchange between
the client and the cloud from a client’s perspective with controlled comparison, from
which we hope to gain insight as guidance for optimizing application design on the
client side. Therefore, our testing tool is designed to observe the direct communication
to the cloud and purposefully bypasses any client-side optimization techniques (e.g.,
caching, prefetching, compression, deduplication).

Some observations reported in prior work also imply that our findings can be used
to improve the design and implementation of cloud storage clients. For example, as
reported by Bocchi et al. [2015], among the 11 tested cloud storage client applications
(including Dropbox, Google Drive, Box, Copy, etc.), seven applications adopt the ap-
proach of splitting large files into fix-sized smaller chunks, while others do not chunk
files. Our findings suggest that proper combination of chunk size and parallelism de-
gree can accelerate data transmission, and such a combination is supposed to be client
dependent. Our case studies on several typical working scenarios of cloud storage fur-
ther demonstrate the efficiency and effectiveness of our findings for optimization on
the client side of cloud storage for data-intensive workloads.

Some prior work studied the performance variance issues of cloud storage. For
example, Wu et al. [2015] characterized the latency variance of accessing cloud
storage based on the observations on Amazon S3 and Windows Azure, and proposed
CosTLO, which is a system aiming to reduce such variance by using different levels
of redundancy. It mostly focuses on access latency and does not consider the effects
of clients’ capabilities and client-side optimizations (parallelism and request size). In
contrast, our work focuses on characterizing both bandwidth and access latency and
also investigates the effects of various and particularly client-related factors. As for

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

16:34 B. Hou et al.

optimizing user experiences, we also show a sampling- and inference-based method
to determine a proper combination of parallelism degree and request size on the client
side. This is also different from CosTLO, which adopts data redundancy on the server
side of cloud storage to reduce latency variance.

Besides object-based storage, some service providers also provide block- and file-level
storage services, such as Amazon Elastic Block Store (EBS) [Amazon 2015a] and Elastic
File System (EFS) [Amazon 2015b]. These services are more similar to conventional IP-
based storage, such as iSCSI and NFS. Although this work focuses on the HTTP-based
object storage, represented by Amazon S3, the other cloud-based services represented
by EBS and EFS are worth further studies in the future.

9. CONCLUSIONS

We present a comprehensive experimental study on Amazon S3, a typical cloud stor-
age provider, to investigate the critical factors affecting the perceived performance of
cloud storage from a client-side perspective. Our experiments show several important
characteristics of cloud storage, such as benefits of parallelizing cloud storage I/Os,
the latency impact of overparallelization, the effect of clients’ capability on achievable
performance, the interference among corunning requests, and more. Based on these
findings, we propose a sampling- and inference-based method to determine a proper
combination of parallelism degree and request size. We also present a set of case studies
in typical cloud storage scenarios. We hope our observations and the associated sys-
tem implications can provide guidance to help practitioners and application designers
exploit various optimization opportunities for cloud storage clients.

REFERENCES

Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010. RACS: A case for cloud storage
diversity. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). Indianapolis, IN.

Amazon. 2010. Amazon S3 Object Size Limit Now 5 TB. Retrieved from https://aws.amazon.com/blogs/aws/
amazon-s3-object-size-limit/.

Amazon. 2015a. Amazon EBS. Retrieved from https://aws.amazon.com/ebs/.
Amazon. 2015b. Amazon EFS. Retrieved from https://aws.amazon.com/efs/.
Amazon. 2015c. Amazon S3. Retrieved from https://aws.amazon.com/s3/.
Amazon. 2015d. Amazon S3 TCP Window Scaling. Retrieved from http://docs.aws.amazon.com/AmazonS3/

latest/dev/TCPWindowScaling.html.
Andreas Bergen, Yvonne Coady, and Rick McGeer. 2011. Client bandwidth: The forgotten metric of online

storage providers. In Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PacRim’11).

Ignacio Bermudez, Stefano Traverso, Marco Mellia, and Maurizio Munafo. 2013. Exploring the cloud from
passive measurement: The amazon AWS case. In Proceedings of the 32nd IEEE International Conference
on Computer Communications (INFOCOM’13).

Bessani, Alysson, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia, Marcelo Pasin, , and Paulo
Verissimo. 2014. SCFS: A shared cloud-backed file system. In Proceedings of the 2014 USENIX Annual
Technical Conference (ATC’14).

Enrico Bocchi, Idilio Drago, and Marco Mellia. 2015. Personal cloud storage benchmarks and comparison.
IEEE Transactions on Cloud Computing 99 (2015), 1–14.

Enrico Bocchi, Marco Mellia, and Sofiane Sarni. 2014. Cloud storage service benchmarking: Methodolo-
gies and experimentations. In Proceedings of the 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet’14). 395–400.

Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. 2010. A self-organized, fault-tolerant and scal-
able replication scheme for cloud storage. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC’10).

Boto. 2015a. An Introduction to Boto’s S3 Interface. Retrieved from http://boto.readthedocs.org/en/latest/
s3_tut.html.

Boto. 2015b. S3 API Reference. https://boto.readthedocs.org/en/latest/ref/s3.html.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

https://aws.amazon.com/blogs/aws/amazon-s3-object-size-limit/
https://aws.amazon.com/blogs/aws/amazon-s3-object-size-limit/
https://aws.amazon.com/ebs/
https://aws.amazon.com/efs/
https://aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/dev/TCPWindowScaling.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/TCPWindowScaling.html
http://boto.readthedocs.org/en/latest/s3tut.html
http://boto.readthedocs.org/en/latest/s3tut.html
https://boto.readthedocs.org/en/latest/ref/s3.html

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s Perspective 16:35

Calder Brad, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, and Yikang Xu
et al. 2011. Windows azure storage: A highly available cloud storage service with strong consistency. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). 119–132.

Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding intrinsic characteristics and system
implications of flash memory based solid state drives. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’09). ACM Press.

Feng Chen, Michael P. Mesnier, and Scott Hahn. 2014. Client-aware cloud storage. In Proceedings of the 30th
International Conference on Massive Storage Systems and Technology (MSST’14).

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmark-
ing cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC’10). ACM Press.

Yong Cui, Zeqi Lai, Xin Wang, Ningwei Dai, and Congcong Miao. 2015. QuickSync: Improving synchronization
efficiency for mobile cloud storage services. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking (MobiCom’15). 582–603.

Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong Zhang. 2007. DiskSeen: Exploiting disk
layout and access history to enhance I/O prefetch. In Proceedings of the 2007 USENIX Annual Technical
Conference (ATC’07). USENIX Association.

Yuan Dong, Jinzhan Peng, Dawei Wang, Haiyang Zhu, Fang Wang, Sun C. Chan, and Michael P. Mesnier.
2011. RFS: A network file system for mobile devices and the cloud. In SIGOPS Operating System Review,
Vol. 45. 101–111.

Idilio Drago, Enrico Bocchi, Marco Mellia, Herman Slatman, and Aiko Pras. 2013. Benchmarking personal
cloud storage. In Proceedings of the 2013 ACM Conference on Internet Measurement Conference (IMC’13).

Idilio Drago, Enrico Bocchi, Macro Mellia, Herman Slatman, and Aiko Pras. 2014. Modeling the dropbox
client behavior. In Proceedings of the 2014 IEEE International Conference on Communications (ICC’14).

Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto, Ramin Sadre, and Aiko Pras. 2012. Inside
dropbox: Understanding personal cloud storage services. In Proceedings of the 2012 ACM Conference on
Internet Measurement Conference (IMC’12).

Dropbox. 2015. Dropbox. Retrieved from https://www.dropbox.com/.
Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo Seltzer. 2003. Passive NFS tracing of email and

research workloads. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies
(FAST’03). USENIX Association.

D. Ford, F. Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes,
and Sean Quinlan. 2010. Availability in globally distributed storage systems. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’10).

Google. 2015. Google Drive. https://www.google.com/drive/.
Raul Gracia-Tinedo, Marc Sanchez Artigas, Adrian Moreno-Martinez, Cristian Cotes, and Pedro Garcia

Lopez. 2013. Actively measuring personal cloud storage. Proceedings of the 2013 IEEE 6th International
Conference on Cloud Computing (CLOUD’13). 301–308.

Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Waldspurger, and Mustafa Uysal. 2011. Pesto:
Online storage performance management in virtualized datacenters. In Proceedings of the 2nd ACM
Symposium on Cloud Computing (SoCC’11).

Keqiang He, Alexis Fisher, Liang Wang, Aaron Gember, Aditya Akella, and Thomas Ristenpart. 2013. Next
stop, the cloud: understanding modern web service deployment in EC2 and azure. In Proceedings of the
2013 Conference on Internet Measurement Conference (IMC’13). ACM, 177–190.

Brett D. Higgins, Jason Flinn, T. J. Giuli, Brian Noble, Christopher Peplin, and David Watson. 2012. Informed
mobile prefetching. In Proceedings of the 10th International Conference on Mobile Systems, Applications,
and Services (MobiSys’12). 155–158.

Binbing Hou, Feng Chen, Zhonghong Ou, Ren Wang, and Michael Mesnier. 2016. Understanding I/O perfor-
mance behaviors of cloud storage from a clients perspective. In Proceedings of the 32nd International
Conference on Massive Storage Systems and Technology (MSST’16).

Wenjin Hu, Tao Yang, and Jeanna N. Matthews. 2010. The good, the bad and the ugly of consumer cloud
storage. In ACM SIGOPS Operating Systems Review, Vol. 44:3.

Yuchong Hu, Henry C. H. Chen, Patrick P.C. Lee, and Yang Tang. 2012. NCCloud: Applying network coding
for the storage repair in a cloud-of-clouds. In Proceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST’12).

Liu Huan. 2002. A trace driven study of packet level parallelism. In Proceedings of the IEEE International
Conference on Communications (ICC’02) 4, 1, 2191–2195.

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

https://www.dropbox.com/
https://www.google.com/drive/

16:36 B. Hou et al.

IHS. 2012. Subscriptions to Cloud Storage Services to Reach Half-Billion Level This Year. Retrieved
from https://technology.ihs.com/410084/subscriptions-to-cloud-storage-services-to-reach-half-billion-
level-this-year.

Van Jacobson, Robert Braden, Dave Borman, M. Satyanarayanan, J. J. Kistler, L. B. Mummert, and M. R.
Ebling. 1992. RFC 1323: TCP Extensions for High Performance.

Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong Zhang. 2005. DULO: An effective buffer
cache management scheme to exploit both temporal and spatial localities. In Proceedings of the 4th
USENIX Conference on File and Storage Technologies (FAST’05). USENIX Association.

Ang Li, Xiaowei Yang, and Ming Zhang. 2010. CloudCmp: Comparing public cloud providers. In Proceedings
of the 10th ACM SIGCOMM Conference on Internet Measurement (IMC’10). ACM Press.

Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y. Zhao, Cheng Jin, Zhi-Li Zhang, and Yafei Dai. 2013.
Efficient batched synchronization in dropbox-like cloud storage services. In Proceedings of International
Middleware Conference (Middleware’13).

Thomas Mager, Ernst Biersack, and Pietro Michiardi. 2012. A measurement study of the wuala on-line
storage service. In Proceedings of the 12th IEEE International Conference on Peer-to-Peer Computing
(P2P’12).

MarketsandMarkets. 2015. Cloud Storage Market by Solutions. (August 2015). http://www.marketsand
markets.com/Market-Reports/cloud-storage-market-902.html.

Xiaofeng Meng, Ying Chen, Jianliang Xu, and Jiaheng Lu. 2010. Benchmarking cloud-based data manage-
ment systems. In Proceedings of the 2nd International Workshop on Cloud Data Management in Cloud
Systems (CloudDB’10). ACM Press

Microsoft. 2015. OneDrive. https://onedrive.live.com/.
OpenStack. 2011. OpenStack Swift. http://www.openstack.org/.
Zhonghong Ou, Zhen-Huan Hwang, Antti Ylä-Jääski, Feng Chen, and Ren Wang. 2015. Is cloud storage

ready? A comprehensive study of IP-based storage systems. In Proceedings of the 8th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing (UCC’15).

S3Backer. 2015. S3Backer. Retrieved from https://code.google.com/p/s3backer/.
S3FS. 2015. S3FS. Retrieved from https://code.google.com/p/s3fs/.
Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. 2012. BlueSky: A cloud-backed file system for the

enterprise. In Proceedings of the 10th USENIX Conference on File and Storage Technologies (FAST’12).
Haiyang Wang, Ryan Shea, Feng Wang, and Jiangchuan Liu. 2012. On the impact of virtualization on

dropbox-like cloud file storage/synchronization services. In Proceedings of International Workshop on
Quality of Service (IWQoS’12).

Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. 2015. CosTLO: Cost-effective redundancy for lower latency
variance on cloud storage services. In Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’15). 543–557.

Rui Zhang, Ramani Routray, David Eyers, David Chambliss, Prasenjit Sarkar, Douglas Willcocks, and Peter
Pietzuch. 2011. IO tetris: Deep storage consolidation for the cloud via fine-grained workload analysis.
In Proceedings of the 4th International IEEE Conference on Cloud Computing (CLOUD’11).

Yupu Zhang, Charis Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. ViewBox:
Integrating local file systems with cloud storage services. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST’14). 119–132.

Received July 2016; revised February 2017; accepted March 2017

ACM Transactions on Storage, Vol. 13, No. 2, Article 16, Publication date: May 2017.

https://technology.ihs.com/410084/subscriptions-to-cloud-storage-services-to-reach-half-billion-level-this-year
https://technology.ihs.com/410084/subscriptions-to-cloud-storage-services-to-reach-half-billion-level-this-year
http://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html
http://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html
https://onedrive.live.com/
http://www.openstack.org/
https://code.google.com/p/s3backer/
https://code.google.com/p/s3fs/

