Oblivious Routing in Wireless networks

Costas Busch
Rensselaer Polytechnic Institute

Joint work with:
Malik Magdon-Ismail and Jing Xi
Outline of Presentation

Introduction
Network Model
Oblivious Algorithm
Analysis
Discussion
Routing: choose paths from sources to destinations
Edge congestion

\[C_{\text{edge}} \]

maximum number of paths that use any edge

Node congestion

\[C_{\text{node}} \]

maximum number of paths that use any node
Stretch = \frac{\text{Length of chosen path}}{\text{Length of shortest path}}

stretch = \frac{12}{8} = 1.5
Oblivious Routing

Each packet path choice is independent of other packet path choices
Path choices: q_1, \ldots, q_k

Probability of choosing a path: $Pr[q_i]$

$$\sum_{i=1}^{k} Pr[q_i] = 1$$
Benefits of oblivious routing:

• Distributed
• Needs no global coordination
• Appropriate for dynamic packet arrivals
Related Work

Valiant [SICOMP'82]:
First oblivious routing algorithms for permutations on butterfly and hypercube
Maggs, Meyer auf der Heide, Voecking, Westermann [FOCS’97]:

d-dimensional Grid: \(C_{edge} = O\left(d \cdot C^*_{edge} \log n\right) \)

Lower bound for oblivious routing:
\[C_{edge} = \Omega\left(\frac{C^*_{edge} \log n}{d}\right) \]
Racke [FOCS’02]:

Arbitrary Graphs: \(C_{\text{edge}} = O\left(C_{\text{edge}}^* \log^3 n \right) \)

existential result

Azar et al. [STOC03]
Harrelson et al. [SPAA03]
Bienkowskies et al. [SPAA03]

constructive
Approach: Hierarchical clustering
At the lowest level every node is a cluster
Pick random node
Problem: Big stretch

Adjacent nodes may follow long paths
An Impossibility Result

Stretch and congestion cannot be minimized simultaneously in arbitrary graphs
Example graph:

Each path has length $\Theta(\sqrt{n})$

\sqrt{n} paths

n nodes

Source of \sqrt{n} packets

Destination of all packets

Length 1
Stretch = 1

Edge congestion = \sqrt{n}

\sqrt{n} packets in one path
Stretch = \sqrt{n}

Edge congestion = 1

1 packet per path
Contribution

Busch, Magdon-Ismail, Xi [SPAA 2005]:

Oblivious algorithm for special graphs embedded in the 2-dimensional plane

Constant stretch

\[\text{stretch} = O(1) \]

Small congestion

\[C_{\text{node}} = O(C_{\text{node}}^* \log n) \]

\[C_{\text{edge}} = O(\Delta \cdot C_{\text{edge}}^* \log n) \]
Embeddings in wide, closed-curved areas
Our algorithm is appropriate for various wireless network topologies.

Transmission radius
Basic Idea

source destination
Pick a random intermediate node
Construct path through intermediate node
Previous results for Grids:

Busch, Magdon-Ismail, Xi [IPDPS’05]

\[C_{\text{edge}} = O(d \cdot C_{\text{edge}}^* \log n) \]

\[\text{Stretch} = O(d^2) \]

For \(d=2 \), a similar result given by C. Scheideler
Outline of Presentation

Introduction

Network Model

Oblivious Algorithm

Analysis

Discussion
Network G Surrounding area A
Perpendicular bisector
\[\gamma(x, y) = \frac{s}{\|x, y\|} \]
Area wideness: \(\gamma = \min_{x,y \in A}(\gamma(x,y)) \)
Coverage Radius R:
maximum distance from a space point to the closest node
For all pair of nodes there exist α, β:

$$\alpha \leq \frac{\text{dist}_G(u,v)}{\|u,v\|} \leq \beta$$

Euclidian distance: $\|u,v\|$

Shortest path length: $\text{dist}_G(u,v)$

$$\frac{\text{dist}_G(u,v)}{\|u,v\|} = \frac{8}{5} = 1.6$$
Consequences of

\[
\alpha \leq \frac{\text{dist}_G(u,v)}{\|u,v\|} \leq \beta
\]

Max Euclidian distance between adjacent nodes

\[
\|u,v\| \leq \frac{1}{\alpha}
\]

(max transmission radius in wireless networks)
Consequences of \(\alpha \leq \frac{\text{dist}_G(u,v)}{|u,v|} \leq \beta \)

Min Euclidian Distance between any pair of nodes: \(|u,v| \geq \frac{1}{\beta} \)

\(O((\beta r)^2) \) nodes
Good Network embeddings:

Small α, β, R and large γ

Suppose they are constants
Outline of Presentation

Introduction

Network Model

Oblivious Algorithm

Analysis

Discussion
Every pair of nodes is assigned a default path.

Examples:

• Shortest paths

• Geographic routing paths (GPSR)
The algorithm
Perpendicular bisector
Pick random space point y
Find closest node to point y
Connect intermediate node w to source and destination.
Consider an arbitrary set of packets:

\[\Pi = \{ \pi_1, \ldots, \pi_N \} \]

Suppose the oblivious algorithm gives paths:

\[P = \{ p_1, \ldots, p_N \} \]
We will show:

\[
\text{stretch} = O(1)
\]

\[
C_{\text{node}} = O(C_{\text{node}}^* \cdot \log n)
\]

optimal congestion
Theorem: \(\text{stretch} = O(1) \)

Proof: Consider an arbitrary path \(p \in P \) and show that:

\[
\text{stretch}(p) = O(1)
\]
\[\text{stretch}(p) = \frac{\text{length}(p)}{\text{dist}_G(s,t)} = \frac{\text{length}(q_1) + \text{length}(q_2)}{\text{dist}_G(s,t)} \]
\[\text{stretch}(p) = \frac{\text{length}(q_1) + \text{length}(q_2)}{\text{dist}_G(s,t)} \]

when default paths are shortest paths

\[\text{stretch}(p) = \frac{\text{dist}_G(s,w) + \text{dist}_G(w,t)}{\text{dist}_G(s,t)} \]

we show this is constant
\[\text{dist}_G(s,w) \leq \beta \cdot \|s,w\| \leq \beta \cdot (\|s,y\| + R) \leq \beta \cdot (\|s,t\| + R) \]

Similarly:

\[\text{dist}_G(w,t) \leq \beta \cdot (\|s,t\| + R) \]
\[\text{dist}_G(s,t) \geq \alpha \cdot \|s,t\| \]

\[\alpha \leq \frac{\text{dist}_G(s,t)}{\|s,t\|} \leq \beta \]
\[
\text{stretch}(p) = \frac{\text{dist}_G(s,w) + \text{dist}_G(w,t)}{\text{dist}_G(s,t)} \leq \frac{2\beta \cdot (\|s,t\| + R)}{\alpha \cdot \|s,t\|}
\]

For \(\alpha, \beta, R\) constants:

\[
\text{stretch}(p) = O(1)
\]

End of Proof
Theorem: Expected case:

\[C = O(\mathcal{C}^* \cdot \log n) \]

Proof: Consider some arbitrary node \(V \) and estimate congestion on \(V \).
Deviation of default paths:

maximum distance from geodesic

\[\text{deviation} = \max \left(\text{deviation} \left(q_i \right) \right) \]
Consider some path from s to t
the use of v depends on the choice of space point y
another choice
If you choose node \(w \) in the cone, the respective path may use \(V \).
If you choose node w outside the cone the respective path does not use v.

deviation

cone affecting

S

t

w

v
Segment of space points affecting V

deviation

cone affecting V
Probability of using node v : $\Pr[v] \leq \frac{l_1}{l_2}$

deviation(Q)

cone affecting v
It can be shown that:

\[\Pr[v] \leq \frac{\ell_1}{\ell_2} \leq \frac{k_1}{\gamma} \left(\frac{R}{\|s,t\|} + \frac{\text{deviation}}{\|s,v\|} \right) \]
\[\|s,v\| \leq \|s,t\| + R + \text{deviation}(Q) \]

for simplicity
assume: \[\|s,v\| \leq \|s,t\| \]
\[\Pr[v] \leq \frac{k_1}{\gamma} \left(\frac{R}{\|s,t\|} + \frac{\text{deviation}}{\|s,v\|} \right) \]

\[\|s,v\| \leq \|s,t\| \]

\[\Pr[v] \leq \frac{k_1(R + \text{deviation})}{\gamma \|s,v\|} \]

\[\gamma, R, \text{deviation}: \text{constants} \]

\[\Pr[v] \leq \frac{k_2}{\|s,v\|} \]
Divide area \(A \) into concentric circles

\[r_i = \frac{2^i}{\beta} \]
Max Euclidian distance between any two nodes = \frac{n}{\alpha}

Longest path has at most \(n \) nodes

\[\| u_i , u_{i+1} \| \leq \frac{1}{\alpha} \]
\[r_i = \frac{2^i}{\beta} \]

Maximum ring radius

\[A \log_{\frac{\beta n}{\alpha}} r \leq \frac{n}{\alpha} \]
\[N_i = \text{number of packets that can affect } \nu \]
\[C_i = \text{number of paths that use } \nu \]

We will bound
\[\Pr[v] \leq \frac{k_2}{\|s,v\|} \leq \frac{k_2}{r_{i-1}} \]
Expected congestion: $E[C_i] \leq N_i \cdot Pr[v] \leq \frac{k_2 N_i}{r_{i-1}}$
We have proven

\[E[C_i] = O\left(\frac{N_i}{r_{i-1}} \right) \]

\[r_{i+1} = 4 \cdot r_{i-1} \]

\[C^* = \Omega\left(\frac{N_i}{r_{i+1}} \right) \]

we prove next
we showed earlier
Similarly, each packet that affects v traverses distance at least r_{i-1}.
\[\alpha \leq \frac{\text{dist}_G(s, t)}{\|s, t\|} \leq \beta \]

\[\|s, t\| \geq r_{i-1} \]

\[\text{dist}_G(s, t) \geq \alpha r_{i-1} \]
Total number of nodes used \(\geq N_i \cdot \alpha r_{i-1} \)
Average node utilization \[\geq \frac{N_i \cdot \alpha r_{i-1}}{\# \text{nodes in area } X} \]
#nodes in area $X = O((\beta r_{i+1})^2)$
Average node utilization \(\geq \frac{N_i \cdot \alpha r_{i-1}}{O((\beta r_{i+1})^2)} = \Omega\left(\frac{N_i}{r_{i+1}}\right) \)

\[C^* \geq \text{average node utilization} \]

\[C^* = \Omega\left(\frac{N_i}{r_{i+1}}\right) \]
We have proven:

\[E[C_i] = O\left(\frac{N_i}{r_{i-1}}\right) \]

\[r_{i+1} = 4 \cdot r_{i-1} \]

\[C^* = \Omega\left(\frac{N_i}{r_{i+1}}\right) \]

\[E[C_i] = O(C^*) \]
Considering all the rings:

$$E(C) = \sum_{i=0}^{\alpha} E[C_i]$$

$$= O\left(C^* \cdot \log\frac{\beta n}{\alpha}\right)$$

$$= O(C^* \cdot \log n)$$

End of Proof
Recap

We presented a simple oblivious algorithm which has:

Constant stretch

\[\text{stretch} = O(1) \]

Small congestion

\[C_{\text{node}} = O(C^*_{\text{node}} \log n) \]
\[C_{\text{edge}} = O(\Delta \cdot C^*_{\text{edge}} \log n) \]

when the parameters of the Euclidian embedding are constants
Outline of Presentation

Introduction

Network Model

Oblivious Algorithm

Analysis

Discussion
Holes
Arbitrary closed shapes

there is no γ