
Memory-Constrained Data Locality Optimization
for Tensor Contractions

Alina Bibireata1, Sandhya Krishnan1, Gerald Baumgartner1, Daniel Cociorva1,
Chi-Chung Lam1, P. Sadayappan1, J. Ramanujam2, David E. Bernholdt3, and

Venkatesh Choppella3

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210, USA.

{bibireat,krishnas,gb,cociorva,clam,saday }@cis.ohio-state.edu
2 Department of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803, USA.
jxr@ece.lsu.edu

3 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
{bernholdtde,choppellav }@ornl.gov

Abstract. The accurate modeling of the electronic structure of atoms and mol-
ecules involves computationally intensive tensor contractions over large multi-
dimensional arrays. Efficient computation of these contractions usually requires
the generation of temporary intermediate arrays. These intermediates could be
extremely large, requiring their storage on disk. However, the intermediates can
often be generated and used in batches through appropriate loop fusion trans-
formations. To optimize the performance of such computations a combination of
loop fusion and loop tiling is required, so that the cost of disk I/O is minimized. In
this paper, we address the memory-constrained data-locality optimization prob-
lem in the context of this class of computations. We develop an optimization
framework to search among a space of fusion and tiling choices to minimize the
data movement overhead. The effectiveness of the developed optimization ap-
proach is demonstrated on a computation representative of a component used in
quantum chemistry suites.

1 Introduction

An increasing number of large-scale scientific and engineering applications are highly
data intensive, operating on large data sets that range from gigabytes to terabytes, thus
exceeding the physical memory of the machine.

Scientific applications, in particular electronic structure codes widely employed in
quantum chemistry [12, 13], computational physics, and material science, require elab-
orate interactions between subsets of data; data cannot be simply brought into the phys-
ical memory once, processed, and then over-written by new data. Subsets of data are
repeatedly moved back and forth between a small memory pool, limited physical mem-
ory, and a large memory pool, the unlimited disk. The cost introduced by these data
movements has a large impact on the overall execution time of the computation. In such
contexts, it is necessary to developout-of-corealgorithms that explicitly orchestrate the



movement of subsets of data within the memory-disk hierarchy. These algorithms must
ensure that data is processed in subsets small enough to fit the machine’s main memory,
but large enough to minimize the cost of moving data between disk and memory.

This paper presents an approach to the automated synthesis ofout-of-coreprograms
with particular emphasis on the Tensor Contraction Engine (TCE) program synthesis
system [1, 3, 2, 5, 4]. The TCE targets a class of electronic structure calculations, which
involve many computationally intensive components expressed as tensor contractions
(essentially generalized matrix products involving higher dimensional matrices). Al-
though the current implementation addresses tensor contraction expressions arising in
quantum chemistry, the approach developed here has broader applicability; we believe
it can be extended to automatically generate efficient out-of-core code for a range of
computations expressible as imperfectly nested loop structures operating on arrays po-
tentially larger than the physical memory size.

The evaluation of such expressions involves explicit decisions about:

– the structure of loops, including tiling strategies
– the evaluation order of intermediate arrays
– memory operations (allocate, deallocate, reallocate)
– disk operations (read, write)

The fundamental compiler transforms that we apply here are loop fusion and loop tiling:

– Loop Fusion: The evaluation of the tensor contraction expressions often results in
the generation of large temporary arrays that would be too large to be produced
entirely in main memory by a “producer” loop nest and then consumed by a “con-
sumer” loop nest. By suitably fusing common loops in the producer and consumer
loop nests, it is feasible to reduce the dimensionality of the buffer array used in
memory and store the intermediate array on disk. Thus, a smaller in-memory array
may be used to produce the full disk array in chunks.

– Loop Tiling: It enables data locality to be enhanced, so that the cost of moving
data to/from disk is decreased.

For minimizing the disk access cost under a given memory constraint, the compiler
needs to search among many possible loop fusion structures, tile sizes, and placements
of temporaries on disk. Conceptually, it is necessary to search along all three dimen-
sions simultaneously. A decoupled approach that first searches for a fusion structure that
minimizes the memory usage, followed by tiling and disk placements [5], may produce
code with a sub-optimal disk-access cost as an example in the next section illustrates.
A decoupled approach that first optimizes disk access by tiling the loops and placing
temporaries on disk, followed by loop fusion for reducing memory usage, may fail to
find a solution that fits into memory since the constraints imposed by tiling prohibit
many possible fusions. However, a simultaneous search along all three dimensions is
computationally infeasible.

In this paper, we present an integrated approach in which we first search for possi-
ble fusion structures together with disk placements. The result of this search is a set of
candidate loop structures with different memory requirements and different combina-
tions of disk placements for the temporaries. For each of the solutions from this search



we then search for the tile sizes that minimize the disk access cost [6]. We present two
algorithms for the combined fusion and disk placement search: an optimal algorithm
that is guaranteed to find the solution that will have the minimum disk access cost after
tiling and a heuristic algorithm that is more efficient but may result in a suboptimal
solution after tiling.

The rest of the paper is organized as follows. In the next section, we discuss the
class of computations that we consider and discuss an example from computational
chemistry. In Sec. 3, we introduce the main concepts used in this paper. Sec. 4 presents
an optimal fusion plus tiling algorithm. Sec. 5 presents a suboptimal, but empirically
efficient fusion plus tiling algorithm. Sec. 6 presents experimental evidence of the per-
formance of this algorithm, and conclusions are provided in Sec. 7.

2 The Computational Context

We consider the class of computations in which the final result to be computed can be
expressed in terms of tensor contractions, essentially a collection of multi-dimensional
summations of the product of several input arrays. There are many different ways to
compute the final result due to commutativity, associativity and distributivity. The ways
to compute the final result could differ widely in the number of floating point operations
required, in the amount of memory needed, and in the amount of disk-to-memory traffic.

As an example, consider a transformation often used in quantum chemistry codes to
transform a set of two-electron integrals from an atomic orbital (AO) basis to a molec-
ular orbital (MO) basis:

B(a,b,c,d) = ∑
p,q,r,s

C1(d,s)×C2(c, r)×C3(b,q)×C4(a, p)×A(p,q, r,s).

Here,A(p,q, r,s) is an input four-dimensional array (assumed to be initially stored on
disk), andB(a,b,c,d) is the output transformed array, which needs to be placed on
disk at the end of the calculation. The arraysC1 throughC4 are called transformation
matrices.

The indicesp, q, r, ands denote the total number of orbitals, and have the same
rangeN equal toO+V, whereO is the number of occupied orbitals in the chemistry
problem andV is the number of unoccupied (virtual) orbitals. Similarly, the indicesa,
b, c, andd have the same range equal toV. Typical values forO range from 10 to 300,
and the number of virtual orbitalsV is usually between 50 and 1000.

The result arrayB is computed in four steps to reduce the number of floating point
operations fromO(V4N4) in the initial formula (8 nested loops, forp, q, r, s, a, b, c,
andd) to O(VN4) as shown below:

B(a,b,c,d) = ∑
s

C1(d,s)×

(
∑
r

C2(c, r)×

(
∑
q

C3(b,q)×

(
∑
p

C4(a, p)×A(p,q, r,s)

)))
.

The result of this operation-minimal approach is the creation of three temporary in-
termediate arraysT1, T2, andT3 as follows:T1(a,q, r,s) = ∑pC4(a, p)A(p,q, r,s),
T2(a,b, r,s) = ∑qC3(b,q)T1(a,q, r,s), andT3(a,b,c,s) = ∑r C2(c, r)T2(a,b, r,s). As-
suming that the available memory limit on the machine running this calculation is less



thanV4 (which is 3TB forV = 800), any of the logical arraysA, T1, T2, T3, andB
is too large to entirely fit in memory. Therefore, if the computation is implemented as
a succession of four independent steps, the intermediatesT1, T2, andT3 have to be
written to disk once they are produced, and read from disk before they are used in the
next step. Furthermore, the amount of disk access volume could be much larger than the
total volume of the data on disk containingA, T1,T2,T3, andB. Since none of these ar-
rays can be fully stored in memory, it may not be possible to perform all multiplication
operations by reading each element of the input arrays from disk only once.

We use loop fusion to reduce the memory requirements for the temporary arrays and
loop fusion together with loop tiling to reduce the disk access volume. For illustrating
the interactions between fusion and tiling consider the following simple example with
only two contractions:

Di j = ∑
k

Aik×

(
∑
l

Bkl ×Cjl

)
.

To prevent the intermediate arrayt[k, j] = ∑l Bkl ×Cjl from having to be written
to disk in case it does not fit in memory, we need to fuse loops between the producer
and the consumer oft[k, l ]. This results in the intermediate array being formed and
used in a pipelined fashion. For every loop that is fused between the producer and the
consumer of an intermediate, the corresponding dimension can be removed from the
intermediate. E.g., in the loop structure in Fig. 1(a), the intermediatet[k, l ] could be
reduced to a scalar, while in the loop structure in Fig. 2(a), it could only be reduced to
a vectort[k].

FOR i, j
D[i,j] = 0

FOR j, k
t = 0
FOR l

t += C[j,l] * B[k,l]
FOR i

D[i,j] += A[i,k] * t

(a) Memory minimal loop structure

FOR iT, jT
Initialize(D[iI,jI],0.0)
Write D[iI,jI] to D[iT + iI,jT + jI]

FOR jT, kT
Initialize(t[jI,kI],0.0)
FOR lT

C[jI,lI] = Read C[jT + jI,lT + lI]
B[kI,lI] = Read B[kT + kI,lT + lI]
FOR jI, kI, lI

t[jI,kI] += C[jI,lI] * B[kI,lI]
FOR iT

D[iI,jI] = Read D[iT + iI,jT + jI]
A[iI,kI] = Read A[iT + iI,kT + kI]
FOR jI, kI, iI

D[iI,jI] += A[iI,kI] * t_2[jI,kI]
Write D[iI,jI] to D[iT + iI,jT + jI]

(b) Tiled loop structure

Fig. 1. Illustration of the decoupled approach for a simple example

Notice that for reducing the memory requirements of the temporary to a scalar in
Fig. 1(a), it is necessary to have the file read operations forB andC inside the innermost
loop. This results in the input arrays to be read redundantly multiple times. In this
example,B is read once for every iteration of thej loop, whileC is read once for every
iteration of thek loop.



FOR j
FOR k

t[k] = 0.0
FOR l

C = Read C[j,l]
FOR k

B = Read B[k,l]
t[k] += B * C

FOR i
D = 0.0
FOR k

A = Read A[i,k]
D += A * t[k]

Write D to D[i,j]

(a) Best loop structure with temporary
in memory

FOR jT
FOR kT, jI, kI

t[kT + kI,jI] = 0.0
FOR lT

C[jI,lI] = Read C[j,l]
FOR kT

B[kI,lI] = Read B[k,l]
FOR jI, lI, kI

t[kT + kI,jI] += B[kI,lI] * C[jI,lI]
FOR iT

FOR jI, iI
D[iI,jI] = 0.0

FOR kT
A[iI,kI] = Read A[i,k]
FOR jI, iI, kI

D[iI,jI] += A[iI,kI] * t[kT + kI,jI]
Write D[iI,jI] to D[i,j]

(b) Tiled loop structure

Fig. 2. Illustration of the integrated approach for a simple example

The number of redundant read operations can be reduced by tiling the loops and
reading entire tiles in one operation as illustrated in Fig. 1(b).B, e.g., is now only read
redundantly once for every iteration of thejT tiling loop. In exchange, the memory
requirement increases since all fused array dimensions get expanded to tile size. The
disk access volume for a given loop structure can, therefore, be minimized by increasing
the tile sizes until the memory is exhausted.

In our previous decoupled approach to fusion and tiling, we first fused the loops
in order to minimize the memory usage. The memory-minimal loop structure was then
tiled to minimize the disk access cost, as shown in Fig. 1. We found that for some
examples, this resulted in suboptimal solutions, since there were too many redundant
read operations for the input arrays. Also, the memory-minimal loop structure often
results in the summation loop being the outer-most loop for a contraction. This requires
the initialization of the result array to be outside the non-summation tiling loops, which
then requires both a read and a write operation for the result array. This is illustrated
with arrayD in Fig. 1(b).

Minimizing the disk access cost before fusion by deciding which temporaries to
put on disk is not possible, since the resulting constraints on the loop structure might
prevent the solution from fitting in memory. Also, since fusion can eliminate the need
of writing some temporaries to disk, it can help reduce the disk access cost. What is,
therefore, needed is an integrated approach in which we minimize the disk access cost
under a memory constraint. The loop structure in Fig. 2 is the result of such an integrated
approach.

It is not feasible, to simultaneously search for all possible loop structures and all
possible tile sizes. Instead, we first produce a set of candidate loop structures and de-
cide which of the temporaries are written to disk for a given loop structure. For each
candidate solution in this set, we then determine the tile sizes that minimize the disk
access cost. Finally, we select the tiled loop structure with the minimal disk access cost.
We have previously described the tile size search and the proper placement of I/O oper-



ations in the tiled loop structure [6]. In this paper, we concentrate on the algorithms for
finding the candidate solutions for the tile size search.

3 Preliminaries

Before describing the algorithms, we first need to present the notions of expression
trees, fusions, and nestings. Since these concepts, as well as the algorithms, are not
limited to tensor contraction expressions, we describe them in the context of arbitrary
sums-of-products expressions. For more detailed explanation, readers are referred to [7–
11]. As an example to illustrate the concepts, we use the multi-dimensional summation
shown in Figure 3(a) represented by the expression tree in Figure 3(b). One way to fuse
the loops is shown in Figure 3(c).

W[k] = ∑
i

∑
j
∑
l

(A[i, j]×B[ j,k, l ]×C[k, l ])

(a) A multi-dimensional summation

B[ j,k, l ] C[k, l ]

�
�

@
@

A[i, j] ×f2

∑i ∑kf1 f3

�
�

@
@

×f4

∑ jf5

(b) An expression tree for computing (a)

Initialize f1[j]
for i for j[

A = Read A[i,j]
f1[j] += A

Initialize f5[k]
for k

for l[
C[l] = Read C[k,l]

for j

Initialize f3
for lB = Read B[j,k,l]

f2 = B × C[l]
f3 += f2

f4 = f1[j] ×f3
f5[k] += f4

(c) A loop fusion configuration for (b)

Fig. 3.An example multi-dimensional summation.

Indexset sequence.To describe the relative scopes of a set of fused loops, we intro-
duce the notion of anindexset sequence, which is defined as an ordered list of disjoint,
non-empty sets of loop indices. For example,f = 〈{i,k},{ j}〉 is an indexset sequence.
For simplicity, we write each indexset in an indexset sequence as a string. Thus,f is
written as〈ik, j〉. Let g andg′ be indexset sequences. We denote bySet(g) the union
of all indexsets ing, i.e.,Set(g) =

⋃
1≤r≤|g|g[r]. For instance,Set( f ) = Set(〈 j, i,k〉) =

{i, j,k}.
Fusion. We use the notion of an indexset sequence to define afusion. Intuitively,

the loops fused between a node and its parent are ranked by their fusion scopes in the



subtree from largest to smallest; two loops with the same fusion scope have the same
rank (i.e., are in the same indexset). In the example, the fusion betweenB and f2 is
〈k, jl 〉.

Nesting.Similarly, anestingof the loops at a nodev can be defined as an indexset
sequence. Intuitively, the loops at a node are ranked by their scopes in the subtree; two
loops have the same rank (i.e., are in the same indexset) if they have the same scope. In
the example, the loop nesting atf2 is 〈k, jl 〉 (because the fusedk-loop covers one more
node, namelyC).

The “more-constraining” relation on nestings. A nestingh at a nodev is said
to bemore or equally constraining thananother nestingh′ at the same node, denoted
hv h′, if any loop fusion configuration for the rest of the expression tree that works
with h also works withh′. This relation allows us to do effective pruning among the
large number of loop fusion configurations for a subtree.

4 Optimal Fusion + Tiling Algorithm

We derive the memory usage and the disk access volume of arrays in tiled, imperfectly
nested loops as follows. Without tiling, the memory usage of an array is the product of
the ranges of its unfused dimensions. With tiling, the tile sizes of the fused dimensions
also contribute to the product. The disk access volume is the size of the array times the
trip counts of the loops surrounding the read/write statement but not corresponding to
the dimensions of the array. Without tiling, the trip counts of such extra loops are simply
their index ranges. With tiling, the trip counts become their index ranges divided by their
tile sizes. In addition, if partial sums are produced and written to disk, they need to be
read back into memory, thus doubling the disk access volume.

MemUsage(A, f ) = ∏
i∈FusedDimens(A, f )

Ti × ∏
i∈UnfusedDimens(A, f )

Ni

DiskCost(A, f ) = WriteFactor(A, f )× ∏
i∈A.dimens

Ni × ∏
i∈ExtraLoops(A, f )

Ni/Ti

where

WriteFactor(A, f ) =


2 if f is the fusion betweenproduce Aandwrite A

andA.dimens⊂ Set( f )
1 otherwise

FusedDimens(A, f ) = A.dimens∩Set( f )

UnfusedDimens(A, f ) = A.dimens−Set( f )

ExtraLoops(A, f ) = Set( f )−A.dimens

and f is the fusion betweenread Aandconsume A, betweenproduce Aandconsume A,
or betweenproduce Aandwrite A.

As an example, for a disk-resident arrayX[i, j,k], if the fusion betweenproduce X
andwrite X is g = 〈i j 〉, then we have from the above equations:

FusedDimens(X,g) = {i, j}



UnfusedDimens(X,g) = {k}

MemUsage(X,g) = Ti ×Tj ×Nk

WriteFactor(X,g) = 1

ExtraLoops(X,g) = /0

DiskCost(X,g) = Ni ×Nj ×Nk

Note that if an intermediate array is written to disk, it would have two potentially-
different MemUsage: one for before writing to disk and one after reading back from
disk. Similarly, it would have twoDiskCost: one for writing it and one for reading it.

SinceMemUsageandDiskCostdepend on tile sizes, it may appear we cannot com-
pareMemUsageandDiskCostbetween different fusions without knowing the tile sizes.
However, some comparison is still possible. Continuing with the above example, if the
fusion betweenproduce Xandwrite X is g′ = 〈il 〉, then:

MemUsage(X,g′) = Ti ×Nj ×Nk

DiskCost(X,g′) = Ni ×Nj ×Nk×Nl /Tl

No matter what tile sizes are used forg′, we can use the same tile sizes forg and as-
sure thatMemUsage(X,g) ≤ MemUsage(X,g′) andDiskCost(X,g) ≤ DiskCost(X,g′)
becauseTj ≤ Nj andNl/Tl ≥ 1. Hence, fusiong′ for arrayX is inferior to fusiong and
can be pruned away.

Generalizing from this example, we obtain the sufficient conditions for a fusion to
result in less or equalMemUsageor DiskCostthan another one.

LeqMemUsage(A, f , f ′) = FusedDimens(A, f )⊇ FusedDimens(A, f ′)

LeqDiskCost(A, f , f ′) = ExtraLoops(A, f )⊆ ExtraLoops(A, f ′)

The first condition above impliesUnfusedDimens(A, f ) ⊆ UnfusedDimens(A, f ′) and
henceMemUsage(A, f ) ≤ MemUsage(A, f ′) for same set of tile sizes becauseTi ≤
Ni for any indexi. Similarly, the second condition above (forLeqDiskCost(A, f , f ′))
impliesWriteFactor(A, f )≤WriteFactor(A, f ′) andDiskCost(A, f )≤DiskCost(A, f ′)
for same set of tile sizes becauseNi/Ti ≥ 1 for any indexi.

In our example, bothLeqMemUsage(X,g,g′) and LeqDiskCost(X,g,g′) are true
becauseFusedDimens(X,g) = {i, j} is a superset ofFusedDimens(X,g′) = {i} and
ExtraLoops(X,g) = /0 is a subset ofExtraLoops(X,g′) = {l}.

To apply LeqMemUsageand LeqDiskCostto compare different solutions corre-
sponding to different fusion configurations for a subtree, we need to consider the dif-
ferent combinations of whether each array is disk-resident or not.
LeqMemUsage(s,s′)≡
∀ arrayA in the subtree rooted ats.root,
{



LeqMemUsage(A,s.A. fr ,s′.A. fr ) and
LeqMemUsage(A,s.A. fw,s′.A. fw) if s.A.ondiskands′.A.ondisk

FusedDimens(A,s.A. fr )⊃ FusedDimens(A,s′.A. fc) and
FusedDimens(A,s.A. fw)⊃ FusedDimens(A,s′.A. fc) if s.A.ondiskand nots′.A.ondisk

LeqMemUsage(A,s.A. fc,s′.A. fr ) and
LeqMemUsage(A,s.A. fc,s′.A. fw) if not s.A.ondiskands′.A.ondisk

LeqMemUsage(A,s.A. fc,s′.A. fc) if not s.A.ondiskand
nots′.A.ondisk

}
LeqDiskCost(s,s′)≡
∀ arrayA in the subtree rooted ats.root,
{

LeqDiskCost(A,s.A. fr ,s′.A. fr ) and
LeqDiskCost(A,s.A. fw,s′.A. fw) if s.A.ondiskands′.A.ondisk

nots.A.ondisk otherwise
}

where

s.A.ondisk means arrayA is disk-resident in solutions

s.A. fr is the fusion betweenread Aandconsume Ain solutions

s.A. fw is the fusion betweenproduce Aandwrite A in solutions

s.A. fc is the fusion betweenproduce Aandconsume Ain solutions

For input or final-result arrays where fusionsfr or fw do not apply, or for intermediate
disk-resident arrays where fusionfr is yet to be decided, such fusions are considered
empty sets.

Making use of the above results, we can compare and prune solutions as follows.
A solution that has higher or equal memory usage and disk access cost and a more
or equally constraining nesting than another solution is considered inferior and can be
pruned away safely. Between solutions for the entire tree and between solutions for a
subtree whose root array is disk-resident and its fusionfr is undecided, pruning without
the condition of a more or equally constraining nesting is also safe.

Inferior(s′,s)≡
LeqMemUsage(s,s′) and
LeqDiskCost(s,s′) and
(s′.root.nestingv s.root.nestingor

s.root = Rootor
(s.root.ondiskands′.root.ondiskands.root. fr = s′.root. fr = /0))

A dynamic programming, bottom-up algorithm using theInferior condition as a
pruning rule works as follows. For each leaf node (corresponding to an input array) in
the tree, one solution is formed for each possible fusionfr (or fc if it is not disk-resident)
with its parent and then inferior solutions are pruned away. For each intermediate array
A in the tree, all possible legal fusionsfw and fc, for writing A to disk or not respectively,
are considered in deriving new solutions from the children ofA. Solutions that writeA
to disk are pruned against each other before all possible legal fusionsfr are enumerated



to derive new solutions. Then all inferior solutions for the subtree rooted atA, whether
writing A to disk or not, are pruned away. For the root of tree, if it is to be written to
disk, all possible legal fusionsfw are considered in deriving new solutions. Finally, all
inferior solutions for the entire tree are pruned away.

Although this approach is guaranteed to find an optimal solution, it could be expen-
sive. The reason is the conditionLeqMemUsage(s,s′) requires each and every array in
the subtree in solutions to have lower or equal memory usage than the corresponding
array in solutions′, and similarly forLeqDiskCost(s,s′) in terms of disk access cost.
If either the memory usage or the disk access cost of any array ins is incomparable
to the corresponding array ins′, no solution derived froms for a larger subtree would
be comparable to any solution derived froms′. Thus, in the worse case, the number of
unpruned solutions for the entire tree could grow exponentially in the number of arrays.
Due to its exponential complexity, we have yet to implement this approach.

5 Efficient Fusion + Tiling Algorithm

Since the optimal fusion and tiling algorithm is impractical to implement, due to its
large number of unpruned solution, we have devised a sub-optimal, efficient algorithm
to solve the fusion and tiling problem. The central idea of this algorithm is to first fix a
tile sizeT common to all the tiled loops, and, based on this tile size, determine a set of
candidate solutions by a bottom-up tree traversal. In the second part of the algorithm,
the tile sizes are allowed to vary, and optimal tile sizes are determined for all candidate
solutions. The candidate solution with the lowest disk cost is finally chosen as the best
overall solution.

Our current implementation of the first part of the algorithm usesT = 1. With
WriteFactor(A, f ), FusedDimens(A, f ), UnfusedDimens(A, f ), and ExtraLoops(A, f )
defined according to Section 4, the memory usage and disk cost for an arrayA become:

MemUsage(A, f ) = ∏
i∈UnfusedDimens(A, f )

Ni

DiskCost(A, f ) = WriteFactor(A, f )× ∏
i∈Set( f )

Ni

where f is the fusion betweenread Aandconsume A, betweenproduce Aandconsume
A, or betweenproduce Aandwrite A.

When an intermediate array is stored on disk, it has twoMemUsage: one for be-
fore writing to disk and one after reading back from disk. In this case, we define
MemUsageas the maximum of the two values. Similarly, the array has twoDiskCost:
one for writing it and one for reading it. We define the total disk cost of an intermediate
array that is stored on disk as the sum of the disk costs for writing it and for reading it
back.

With these definitions, we calculate the memory usage and disk cost of a solutions
corresponding to a given fusion configuration for a subtree:

MemUsage(s) = ∑
Ain the subtree rooted ats.root

MemUsage(A, fs)

DiskCost(s) = ∑
Ain the subtree rooted ats.root

DiskCost(A, fs)



where fs is the fusion betweenread Aandconsume A, betweenproduce Aandconsume
A, or betweenproduce Aandwrite Agiven the fusion configuration of the solutions.

Different solutions corresponding to different fusion configurations for a subtree are
now easily comparable:

LeqMemUsage(s,s′) ≡ {MemUsage(s)≤MemUsage(s′)}

LeqDiskCost(s,s′) ≡ {DiskCost(s)≤ DiskCost(s′)}

Making use of the above results, we can introduce pruning rules similar to those of
the optimal algorithm: a solution that has higher or equal memory usage and disk access
cost and a more or equally constraining nesting than another solution is considered
inferior and can be pruned away safely.

Inferior(s′,s)≡
LeqMemUsage(s,s′) and
LeqDiskCost(s,s′) and
(s.root.nestingv s′.root.nestingor

s.root = Rootor
(s.root.ondiskands′.root.ondiskands.root. fr = s′.root. fr = /0))

A dynamic programming, bottom-up algorithm using theInferiorcondition as a
pruning rule works in the same fashion as the optimal algorithm described in Section 4.
The major difference between the optimal algorithm and the efficient algorithm is that
the Inferior(s,s′) condition is more relaxed in the latter: we no longer require that the
MemUsageandDiskCostinequalities be valid for all individual arrays in the subtree
rooted ats.root. Instead, only the sums ofMemUsageand DiskCostover the entire
subtree need to be compared.

The result of this approach is a set of candidate solutions that are characterized by
pairs of the form (MemUsage(s), DiskCost(s)). The algorithm described above prunes
away all solutions that have higherMemUsageandDiskCostunder the tile size con-
straintT = 1. For each candidate solution in the set, we then search for the tile sizes
that minimize the disk access cost [6]. Increasing the tile sizes causes the disk access
cost to decrease and the memory usage to increase, since array dimensions that have
been eliminated by fusion get expanded to tile size. Finally, we select the solution with
the least disk access cost.

6 Experimental Evaluations

We used the algorithm from Sec. 5 to generate code for the AO-to-MO index transfor-
mation calculation described in Sec 2. The algorithm generated 77 candidate solutions
that would then be run through the tiling algorithm. We present two representative so-
lutions generated by this algorithm.

The solution shown in Fig. 4 places only temporaryT2 on disk, while the solution
shown in Fig. 5 places only the temporaryT1 on disk. After tile size search, the tiled
code with the least disk access cost was the one based on the solution withT2 on disk.
The optimal code is shown in Fig. 6.



FOR r, s
FOR a, q

T1[a,q] = 0.0
FOR p

C4[a] = Read C4[p,a]
FOR q

A = Read A[p,q,r,s]
FOR a

T1[a,q] += A * C4[a]
FOR b

FOR a
T2[a] = 0.0

FOR q
C3 = Read C3[q,b]
FOR a

T2[a] += T1[a,q] * C3
Write T2 to T2[a,b,r,s]

FOR a, b, c
FOR s

T3 = 0.0
FOR r

C2 = Read C2[r,c]
FOR s

T2 = Read T2[a,b,r,s]
T3 += T2 * C2

FOR d
B = 0.0
FOR s

C1 = Read C1[s,d]
B += T3 * C2

Write B to B[a,b,c,d]

Fig. 4.Fused Structure with temporary T2 on disk

FOR q, r, s
FOR a

T1[a] = 0.0
FOR p

A = Read A[p,q,r,s]
FOR a

C4 = Read C4[p,a]
T1[a] += A * C4

Write T1[a] to T1[a,q,r,s]

FOR b
C3[q] = Read C3[q,b]
FOR a

FOR s, c
T3[s,c] = 0.0

FOR r
C2[c] = Read C2[r,c]
FOR s

T2 = 0.0
FOR q

T1 = Read T1[a,q,r,s]
T2 += T1 * C3[q]

FOR c
3[s,c] += T2 * C2[c]

FOR d
FOR c

B[c] = 0.0
FOR s

C1 = Read C1[s,d]
FOR c

B[c] += T3[s,c] * C1
Write B[c] to B[a,b,c,d]

Fig. 5.Fused Structure with temporary T1 on disk

FOR rT, sT
FOR aT, qT, rI, sI, aI, qI

T1[aT+aI,qT+qI,rI,sI] = 0.0
FOR pT

C4[pI,aT+aI] = Read C4[p,a]
FOR qT

A[pI,qI,rI,sI] = Read A[p,q,r,s]
FOR aT, rI, sI, pI, qI, aI

T1[aT+aI,qT + qI,rI,sI] +=
A[pI,qI,rI,sI] * C4[pI,aT+aI]

FOR bT
FOR aT, rI, sI, bI, aI

T2[aT+aI,bI,rI,sI] = 0.0
FOR qT

C3[qI,bI] = Read C3[q,b]
FOR aT, rI, sI, bI, qI, aI

T2[aT+aI,bI,rI,sI] +=
T1[aT+aI,qT+qI,rI,sI]*C3[qI,bI]

Write T2[aT+aI,bI,rI,sI] to
T2[a,b,r,s]

FOR aT, bT, cT
FOR sT, aI, bI, cI, sI

T3[aI,bI,cI] = 0.0
FOR rT

C2[rI,cI] = Read C2[r,c]
FOR sT

T2[aI,bI,rI,sI] =
Read T2[a,b,r,s]

FOR aI, bI, cI, rI, sI
T3[aI,bI,cI] +=

T2[aI,bI,rI,sI]*C2[rI,cI]
FOR dT

FOR aI, bI, cI, dI
B[aI,bI,cI,dI] = 0.0

FOR sT
C1[dI,sI] = Read C1[d,s]
FOR aI, bI, cI, dI, sI

B[aI,bI,cI,dI] +=
T3[aI,bI,cI]*C2[dI,sI]

Write B[aI,bI,cI,dI] to B[a,b,c,d]

Fig. 6.Loop Structure after tiling



Table 1.Configuration of the system whose I/O characteristics were studied.

Processor OS Compiler Memory Hard disk
Pentium II 300 MHzLinux 2.4.18-3gcc version 2.96128MB Maxtor 6L080J4

Measurements were taken on a Pentium II system with the configuration shown
in Table 1. The codes were all compiled with the Intel Fortran Compiler for Linux.
Although this machine is now very old and much slower than PCs available today, it was
convenient to use for our experiments in an uninterrupted mode, with no interference to
the I/O subsystem from any other users.

Table 2. Predicted and Measured I/O Time: a solution generated by the new fusion-datalocality
algorithm for the AO-to-MO transform example.

Predicted Results(seconds)Measured Results(seconds)
Array A 21.3 31
Array B 18.25 14
Array T2 40.14 41

Arrays C1,C2,C3,C4 0.052 0.72
Total time 79.74 86.7

Table 2 shows the measured I/O time for the AO-to-MO transform where the sizes
of the tensors (double precision) considered were:Np = Nq = Nr = Ns = 80 andNa =
Nb = Nc = Nd = 70. We used 100MB as the memory limit. The I/O time for each array
was separately accumulated. The predicted values match quite well with the measured
time. The match is better for the overall I/O time than for some individual arrays. This
is because disk writes are asynchronous and may be overlapped with succeeding disk
reads — hence the measurements of I/O time attributable to individual arrays is subject
to error due to such overlap, but the total time should not be affected by the interleaving
of writes with succeeding reads. For these tensor sizes and an available memory of
100MB, it is possible to choose fusion configurations so that the sizes of any two out
of the three intermediate arrays can be reduced to fit completely in memory, but it is
impossible to find a fusion configuration that fits all three intermediates within memory.
Thus, it is necessary to keep at least one of them on disk, and incur disk I/O cost for
that array.

Table 3 shows the predicted I/O times and the improvement factor of the inte-
grated fusion+tiling algorithm over the decoupled algorithm for the AO-to-MO trans-
formation example for different array sizes and memory limits. For the arrays sizes
a = 70 andp = 80, actual measurements were performed using the 100MB, 500MB,
and 2000MB memory limits and, in all cases, for the integrated algorithm, the predicted
results matched the actual results. For the memory limits of 500MB and 2000MB and
the small array sizes, both the decoupled and the integrated algorithm were able to fit
all the temporaries in memory, and thus no significant improvement was achieved.



Table 3.Comparison of predicted I/O time for the AO-to-MO transform example.

Ranges Decoupled Integrated Improvement factor

100MB
a=70, p=80 1.882×102 sec0.747×102 sec 2.52

a=200, p=3007.390×104 sec0.850×104 sec 8.70
a=500, p=6005.520×106 sec2.300×105 sec24.00

500MB
a=70, p=80 0.395×102 sec0.395×102 sec 1.00

a=200, p=3004.830×104 sec0.850×104 sec 5.70
a=500, p=6003.560×106 sec2.300×105 sec15.50

2000MB
a=70, p=80 0.395×102 sec0.395×102 sec 1.00

a=200, p=3003.780×104 sec0.850×104 sec 4.45
a=500, p=6002.140×106 sec2.109×105 sec10.14

Depending on the size of the problem, as the memory pressure increases, the im-
provement factor of the integrated algorithm over the decoupled algorithm increases
significantly. This is to be expected, because the decoupled algorithm introduces more
redundant reads and writes than the integrated algorithm. With high memory pressure,
the tiles cannot be made very large, which results in an insufficient reduction of the
redundant disk accesses.

The measured results and the predicted results match well and the integrated fu-
sion+tiling algorithm outperforms the decoupled datalocality algorithm.

7 Conclusion

We have described an optimization approach for synthesizing efficient out-of-core al-
gorithms in the context of the Tensor Contraction Engine. We have presented two al-
gorithms for performing an integrated fusion and tiling search. Our algorithms produce
a set of candidate solutions, each with a fused loop structure and read and write oper-
ations for temporaries. After determining the tile sizes that minimize the disk access
cost, the optimal solution is chosen. We have demonstrated with experimental results,
that the integrated approach outperforms a decoupled approach of first determining the
fused loop structure and then searching for the optimal tile sizes.

AcknowledgmentsWe thank the National Science Foundation for its support of this
research through the Information Technology Research program (CHE-0121676 and
CHE-0121706), NSF grants CCR-0073800 and EIA-9986052, and the U.S. Department
of Energy through award DE-AC05-00OR22725.

References

1. G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam, M. Nooijen,
R. Pitzer, J. Ramanujam, P. Sadayappan. A High-Level Approach to Synthesis of High-
Performance Codes for Quantum Chemistry. InProc Supercomputing 2002, Nov. 2002.



2. D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam, M. Nooijen, D. Bern-
holdt, and R. Harrison. Space-Time Trade-Off Optimization for a Class of Electronic Struc-
ture Calculations.Proc. of ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI), June 2002, pp. 177–186.

3. D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanu-
jam. Global Communication Optimization for Tensor Contraction Expressions under Mem-
ory Constraints.Proc. of 17th International Parallel & Distributed Processing Symposium
(IPDPS), Apr. 2003.

4. D. Cociorva, J. Wilkins, C.-C. Lam, G. Baumgartner, P. Sadayappan, and J. Ramanujam.
Loop optimization for a class of memory-constrained computations. InProc. 15th ACM
International Conference on Supercomputing(ICS’01), pp. 500–509, Sorrento, Italy, June
2001.

5. D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooijen,
D.E. Bernholdt, and R. Harrison. Towards Automatic Synthesis of High-Performance Codes
for Electronic Structure Calculations: Data Locality Optimization.Proc. of the Intl. Conf. on
High Performance Computing, Dec. 2001, Lecture Notes in Computer Science, Vol. 2228,
pp. 237–248, Springer-Verlag, 2001.

6. S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam, P. Sadayappan,
J. Ramanujam, D.E. Bernholdt, and V. Choppella. Data Locality Optimization for Synthe-
sis of Efficient Out-of-Core Algorithms. InProc. of the Intl. Conf. on High Performance
Computing, Dec. 2003, Hyderabad, India.

7. C. Lam.Performance Optimization of a Class of Loops Implementing Multi-Dimensional
Integrals, Ph.D. Dissertation, The Ohio State University, Columbus, OH, August 1999.

8. C. Lam, D. Cociorva, G. Baumgartner and P. Sadayappan. Optimization of Memory Usage
and Communication Requirements for a Class of Loops Implementing Multi-Dimensional
Integrals.Proc. 12th LCPC WorkshopSan Diego, CA, Aug. 1999.

9. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Memory-optimal evaluation of
expression trees involving large objects. InProc. Intl. Conf. on High Perf. Comp., Dec. 1999.

10. C. Lam, P. Sadayappan and R. Wenger. On Optimizing a Class of Multi-Dimensional Loops
with Reductions for Parallel Execution.Par. Proc. Lett., (7) 2, pp. 157–168, 1997.

11. C. Lam, P. Sadayappan and R. Wenger. Optimization of a Class of Multi-Dimensional Inte-
grals on Parallel Machines.Proc. of Eighth SIAM Conf. on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.

12. T. J. Lee and G. E. Scuseria. Achieving chemical accuracy with coupled cluster theory. In S.
R. Langhoff (Ed.),Quantum Mechanical Electronic Structure Calculations with Chemical
Accuracy, pp. 47–109, Kluwer Academic, 1997.

13. J. M. L. Martin. In P. v. R. Schleyer, P. R. Schreiner, N. L. Allinger, T. Clark, J. Gasteiger,
P. Kollman, H. F. Schaefer III (Eds.),Encyclopedia of Computational Chemistry.Wiley &
Sons, Berne (Switzerland). Vol. 1, pp. 115–128, 1998.


