
Improving Asynchronous Invocation Performance in
Client-server Systems

Shungeng Zhang†, Qingyang Wang†, Yasuhiko Kanemasa‡
†Computer Science and Engineering, Louisiana State University

‡Software Laboratory, FUJITSU LABORATORIES LTD.

Abstract—In this paper, we conduct an experimental study of
asynchronous invocation on the performance of client-server sys-
tems. Through extensive measurements of both realistic macro-
and micro-benchmarks, we show that servers with the asyn-
chronous event-driven architecture may perform significantly
worse than the thread-based version resulting from two non-
trivial reasons. First, the traditional wisdom of one-event-one-
handler event processing flow can create large amounts of
intermediate context switches that significantly degrade the
performance of an asynchronous server. Second, some runtime
workload (e.g., response size) and network conditions (e.g., net-
work latency) may cause significant negative performance impact
on the asynchronous event-driven servers, but not on thread-
based ones. We provide a hybrid solution by taking advantage
of different asynchronous architectures to adapt to varying
workload and network conditions. Our hybrid solution searches
for the most efficient execution path for each client request
based on the runtime request profiling and type checking. Our
experimental results show that the hybrid solution outperforms
all the other types of servers up to 19%∼90% on throughput,
depending on specific workload and network conditions.

Index Terms—Asynchronous, event-driven, threads, client-
server applications, performance

I. INTRODUCTION

Asynchronous event-driven architecture for high perfor-
mance internet servers has been studied extensively be-
fore [33] [37] [42] [32]. Many people advocate the asyn-
chronous event-driven architecture as a better choice than
the thread-based RPC version to handle high level workload
concurrency because of reduced multi-threading overhead.
Though conceptually simple, taking advantage of the asyn-
chronous event-driven architecture to construct high perfor-
mance internet servers is a non-trivial task. For example,
asynchronous servers are well-known to be difficult to program
and debug due to the obscured control flow compared to the
thread-based version.

In this paper, we show that building high performance in-
ternet servers using the asynchronous event-driven architecture
requires careful design of the event processing flow and the
ability to adapt to the runtime varying workload and network
conditions. Concretely, we conduct extensive benchmark ex-
periments to study some non-trivial design deficiencies of the
asynchronous event-driven server architectures that lead to the
inferior performance compared to the thread-based version
when facing high concurrency workload. For example, the
traditional wisdom of one-event-one-handler event processing
flow may generate a large amount of unnecessary intermediate

 0

 400

 800

 1200

 1600

2K 4K 6K 8K 10K 12K 14K
0

2

4

6

8

10

12
28% drop

Th
ro

ug
hp

ut
 [

re
q/

s]

R
es

po
ns

e
Ti

m
e

[s
]

Workload [# of users]

SYStomcatV7-TP
SYStomcatV7-RT
SYStomcatV8-TP
SYStomcatV8-RT

Fig. 1: Upgrading Tomcat from a thread-based version
(V7) to an asynchronous version (V8) in a 3-tier system
leads to significant performance degradation.

events and context switches that significantly degrade the
performance of an asynchronous server. We also observed that
some runtime workload and network conditions may cause
frequent unnecessary I/O system calls (due to the non-blocking
nature of asynchronous function calls) for the asynchronous
event-driven servers, but not for the thread-based ones.

The first contribution is an experimental illustration that
simply upgrading a thread-based component server to its
asynchronous version in an n-tier web system can lead to
significant performance degradation of the whole system at
high utilization levels. For instance, we observed that the
maximum achievable throughput of a 3-tier system decreases
by 23% after we upgrade the Tomcat application server
from the traditional thread-based version (Version 7) to the
latest asynchronous version (Version 8) (see Figure 1) in a
standard n-tier application benchmark (RUBBoS [12]). Our
analysis reveals that the unexpected performance degradation
of the asynchronous Tomcat results from its poor design of
event processing flow, which causes significantly higher CPU
context switch overhead than the thread-based version when
the server is approaching saturation. Our further study shows
such poor design of event processing flow also exists in other
popular asynchronous servers/middleware such as Jetty [3],
GlassFish [10], and MongoDB Java Asynchronous Driver [6].

The second contribution is a detailed analysis of various
workload and network conditions that impact the performance
of asynchronous invocation. Concretely, we have observed
that a moderate-sized response message (e.g, 100KB) for an
asynchronous server can cause a non-trivial write-spin
problem, where the server makes frequent unnecessary I/O

system calls resulting from the default small TCP send buffer
size and the TCP wait-ACK mechanism, wasting the server
CPU resource about 12%∼24%. We also observed some net-
work conditions such as latency can exaggerate the write-spin
problem of asynchronous event-driven servers even further.

The third contribution is a hybrid solution that takes ad-
vantage of different asynchronous event-driven architectures
to adapt to various runtime workload and network conditions.
We studied a popular asynchronous network I/O library named
“Netty [7]” which can mitigate the write-spin problem through
some write operation optimizations. However, such optimiza-
tion techniques in Netty also bring non-trivial overhead in the
case when the write-spin problem does not occur during the
asynchronous invocation period. Our hybrid solution extends
Netty by monitoring the occurrence of write-spin and oscillat-
ing between alternative asynchronous invocation mechanisms
to avoid the unnecessary optimization overhead.

In general, given the strong economic interest in achieving
high resource efficiency and high quality of service simultane-
ously in cloud data centers, our results suggest asynchronous
invocation has potentially significant performance advantage
over RPC synchronous invocation but still needs careful
tunning according to various non-trivial runtime workload
and network conditions. Our work also points to significant
future research opportunities, since asynchronous architecture
has been widely adopted by many distributed systems (e.g.,
pub/sub systems [23], AJAX [26], and ZooKeeper [31]).

The rest of the paper is organized as follows. Section II
shows a case study of performance degradation after software
upgrading from a thread-based version to an asynchronous
version. Section III describes the context switch problem of
servers with asynchronous architecture. Section IV explains
the write-spin problem of asynchronous architecture when it
handles requests with large size responses. Section V evaluates
two practical solutions. Section VI summarizes related work
and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. RPC vs. Asynchronous Network I/O

Modern internet servers usually adopt a few connectors
to communicate with other component servers or end users.
The main activities of a connector include managing up-
stream and downstream network connections, reading/writing
data through the established connections, parsing and routing
the incoming requests to the application (business logic)
layer. Though similar in functionality, synchronous and asyn-
chronous connectors have very different mechanisms to inter-
act with the application layer logic.

Synchronous connectors are mainly adopted by RPC thread-
based servers. Once accepting a new connection, the main
thread will dispatch the connection to a dedicated worker
thread until the close of the connection. In this case, each con-
nection consumes one worker thread and the operating system
transparently switches among worker threads for concurrent
request processing. Although relatively easy to program due
to the user-perceived sequential execution flow, synchronous

connectors bring the well-known multi-threading overhead
(e.g., context switches, scheduling and lock contention).

Asynchronous connectors accept new connections and man-
age all established connections through an event-driven mech-
anism using only one or a few threads. Given a pool of estab-
lished connections in a server, an asynchronous connector han-
dles requests received from these connections by repeatedly
looping over two phases. The first phase (event monitoring
phase) determines which connections have pending events of
interest. These events typically indicate that a particular con-
nection (i.e., socket) is readable or writable. The asynchronous
connector pulls the connections with pending events by taking
advantage of an event notification mechanism such as select,
poll, or epoll, supported by the underlying operating system.
The second phase (event handling phase) iterates over each of
the connections that have pending events. Based on the context
information of each event, the connector dispatches the event
to an appropriate event handler performing the actual business
logic computation. More details can be found in previous
asynchronous server research [42] [32] [38] [37] [28].

In practice there are two general designs of asynchronous
servers using the asynchronous connectors. The first one is
a single-threaded asynchronous server which only uses one
thread to loop over the aforementioned two phases, for exam-
ple Node.js [9] and Lighttpd [5]. Such a design is especially
beneficial for in-memory workloads because context switches
will be minimum while the single thread will not be blocked by
disk I/O activities [35]. Multiple single-threaded servers (also
called N -copy approach [43] [28]) can be launched together
to fully utilize multiple processors. The second design is to
use a worker thread pool in the second phase to concurrently
process connections that have pending events. Such a design is
supposed to efficiently utilize CPU resources in case of tran-
sient disk I/O blocking or multi-core environment [38]. Several
variants of the second design have been proposed before,
mostly known as the staged design adopted by SEDA [42]
and WatPipe [38]. Instead of having only one worker thread
pool, the staged design decomposes the request processing into
a pipeline of stages separated by event queues, each of which
has its own worker thread pool, with the aim of modular design
and fine-grained management of worker threads.

In general, asynchronous event-driven servers are believed
to be able to achieve higher throughput than the thread-
based version because of reduced multi-threading overhead,
especially when the server is handling high concurrency CPU
intensive workload. However, our experimental results in the
following section will show the opposite.

B. Performance Degradation after Tomcat Upgrade

System software upgrade is a common practice for internet
services due to the fast evolving of software components. In
this section we show that simply upgrading a thread-based
component server to its asynchronous version in an n-tier
system may cause unexpected performance degradation at high
resource utilization. We show one such case by RUBBoS [12],
a representative web-facing n-tier system benchmark modeled

0

2K

4K

6K

8K

10K

12K

1 2 4 8 16 32 64 100 200 400 800 16003200

Crossover Point

Th
ro

ug
hp

ut
 [

re
q/

s]

Workload Concurrency [# of Connections]

TomcatSync
TomcatAsync

(a) The 0.1KB response size case.

0

2K

4K

6K

1 2 4 8 16 32 64 100 200 400 800 16003200

Crossover Point

Workload Concurrency [# of Connections]

TomcatSync
TomcatAsync

(b) The 10KB response size case.

 0

 100

 200

 300

 400

1 2 4 8 16 32 64 100 200 400 800 16003200

Crossover Point

Workload Concurrency [# of Connections]

TomcatSync
TomcatAsync

(c) The 100KB response size case.
Fig. 2: Throughput comparison between TomcatSync and TomcatAsync under different workload concurrencies and
response sizes. As response size increases from 0.1KB in (a) to 100KB in (c), TomcatSync outperforms TomcatAsync
at wider concurrency range, indicating the performance degradation of TomcatAsync with large response size.

after the popular news website Slashdot [16]. Our experiments
adopt a typical 3-tier configuration, with 1 Apache web
server, 1 Tomcat application server, and 1 MySQL database
server (details in Appendix A). At the beginning we use
Tomcat 7 (noted as TomcatSync), which uses a thread-based
synchronous connector for inter-tier communication. We then
upgrade the Tomcat server to Version 8 (the latest version at
the time, noted as TomcatAsync), which by default uses
an asynchronous connector, with the expectation of system
performance improvement after Tomcat upgrade.

Unfortunately, we observed a surprising system perfor-
mance degradation after the Tomcat server upgrade, as shown
in Figure 1. We call the system with TomcatSync as
SYStomcatV 7 and the other one with TomcatAsync as
SYStomcatV 8. This figure shows the SYStomcatV 7 saturates
at workload 11000 while SYStomcatV 8 saturates at work-
load 9000. At workload 11000, SYStomcatV 7 outperforms
SYStomcatV 8 by 28% in throughput, and the average response
time is one order of magnitude less (226ms vs. 2820ms). Such
a result is counter intuitive since we upgrade Tomcat from a
lower thread-based version to a newer asynchronous one. We
note that in both cases the Tomcat server CPU is the bottleneck
resource in the system; all the hardware resources of other
component servers are far from saturation (< 60%).

The other interesting phenomenon we observed using Col-
lectl [2] is that TomcatAsync encounters significantly higher
number of context switches than TomcatSync when the
system is at the same workload. For example, at workload
10000 TomcatAsync encounters 12950 context switches per
second while only 5930 for TomcatSync, less than half
of the previous case. It is reasonable to suggest that high
context switches in TomcatAsync cause high CPU overhead,
leading to inferior throughput compared to TomcatSync.
However, the traditional wisdom told us that a server with
asynchronous architecture should have less context switches
than a thread-based server. So why did we observe the opposite
here? We will discuss about the cause in the next section.

III. INEFFICIENT EVENT PROCESSING FLOW IN
ASYNCHRONOUS SERVERS

In this section we explain why the performance of the 3-tier
benchmark system degrades after we upgrade Tomcat from the

Reactor
thread

W
o

rker th
rea

d
 p

o
o

l

 Dispatch read event

 generate write event

 dispatch write event

 return control back

Worker A

Reading/process-
ing request()

()
Worker B

Sending response

Fig. 3: Illustration of the event processing flow when
TomcatAsync processes one request. Totally four context
switches between the reactor thread and worker threads.

thread-based version TomcatSync to the asynchronous ver-
sion TomcatAsync. To simplify and quantify our analysis,
we design micro-benchmarks to test the performance of both
versions of Tomcat.

We use JMeter [1] to generate HTTP requests to access the
standalone Tomcat directly. These HTTP requests are catego-
rized into three types: small, medium, and large, with which
the Tomcat server (either TomcatSync or TomcatAsync)
first conducts some simple computation before responding
with 0.1KB, 10KB, and 100KB of in-memory data, respec-
tively. We choose these three sizes because they are represen-
tative response sizes in our RUBBoS benchmark application.
JMeter uses one thread to simulate each end-user. We set the
think time between the consecutive requests sent from the
same thread to be zero, thus we can precisely control the
concurrency of the workload to the target Tomcat server by
specifying the number of threads in JMeter.

We compare the server throughput between TomcatSync
and TomcatAsync under different workload concurrencies
and response sizes as shown in Figure 2. The three sub-
figures show that as workload concurrency increases from
1 to 3200, TomcatAsync achieves lower throughput than
TomcatSync before a certain workload concurrency. For
example, TomcatAsync performs worse than TomcatSync
before the workload concurrency 64 when the response size is
10KB; and the crossover point workload concurrency is even
higher (1600) when the response size increases to 100KB.

TABLE I: TomcatAsync has more context switches than
TomcatSync under workload concurrencies 8.

Response size TomcatAsync TomcatSync
[×1000/sec]

0.1KB 40 16
10KB 25 7
100KB 28 2

Return back to our previous 3-tier RUBBoS experiments,
our measurements show that under the RUBBoS workload
conditions, the average response size of Tomcat per request
is about 20KB, and the workload concurrency for Tomcat
is about 35 when the system saturates. So based on our
micro-benchmark results in Figure 2, it is not surprising that
TomcatAsync performs worse than TomcatSync. Since
Tomcat is the bottleneck server of the 3-tier system, the
performance degradation of Tomcat also leads to the perfor-
mance degradation of the whole system (see Figure 1). The
remaining question is why TomcatAsync performs worse
than TomcatSync before a certain workload concurrency.

As we found out that the performance degradation of
TomcatAsync results from its inefficient event processing
flow which generates significant amounts of intermediate
context switches, causing non-trivial CPU overhead. Table I
compares the context switches between TomcatAsync and
TomcatSync at workload concurrency 8. This table shows
consistent results as we have observed in the previous RUB-
BoS experiments: the asynchronous TomcatAsync encoun-
tered significantly higher context switches than the thread-
based TomcatSync, given the same workload concurrency
and server response size. Our further analysis reveals that the
high context switches of TomcatAsync is because of its poor
design of event processing flow. Concretely, TomcatAsync
adopts the second design of asynchronous servers (see Sec-
tion II-A), which uses a reactor thread for event monitoring
and a worker thread pool for event handling. To process a new
incoming request, Figure 3 shows the event processing flow
in TomcatAsync, which includes the following four steps:

1) the reactor thread dispatches a read event to a worker
thread;

2) the worker thread reads and parses the event, prepares the
response, and then generates a write event; the reactor
thread is notified the occurrence of the write event;

3) the reactor thread dispatches the write event to a worker
thread to send the response out;

4) the worker thread finishes sending the response, and
returns the control back to the reactor thread.

So to handle one client request, there are totally 4 context
switches among the user-space threads in TomcatAsync
(see step 1 − 4 in Figure 3). Such inefficient event pro-
cessing flow design also exists in many popular asyn-
chronous servers/middleware, including network framework
Grizzly [11], application server Jetty [3]. On the other hand,
in TomcatSync each client request is handled by a dedicated
worker thread, from the initial reading of the request to
preparing the response to sending the response out. No context
switch during the processing of the request unless the worker

TABLE II: Context switches among user-space threads
when the server processes one client request.

Server type Context Note
Switch

sTomcat-Async 4 Read and write events are handled
by different worker threads (Figure 3).

sTomcat-Async-Fix 2 Read and write events are handled
by the same worker thread.

sTomcat-Sync 0
Dedicated worker thread for each re-
quest. Context switch occurs due to
interrupt or CPU time slice expires.

SingleT-Async 0 No context switches, one thread handle
both event monitoring and processing.

thread is interrupted, or swapped out by operating system
because CPU time slice expires.

To better quantify the impact of context switches on the
performance of different server architectures, we simplify
the implementation of TomcatAsync and TomcatSync by
removing out all the unrelated modules (e.g., servlet life cycle
management, cache management, and logging) and only keep-
ing the essential code related to request processing, which we
refer as sTomcat-Async (simplified TomcatAsync) and
sTomcat-Sync (simplified TomcatSync). As a reference,
we implement two alternative designs of asynchronous servers
aiming to reduce the frequency of context switches. The first
alternative design, which we call sTomcat-Async-Fix,
merges the processing of read event and write event from the
same request by using the same worker thread. In this case,
once a worker thread finishes preparing the response, it con-
tinues to send the response out (step 2 and 3 in Figure 3 no
longer exist); thus processing one client request only requires
two context switches: from the reactor thread to a worker
thread and from the same worker thread back to the reactor
thread. The second alternative design is the traditional single-
threaded asynchronous server. The single thread is responsible
for both event monitoring and processing. The single-threaded
implementation, which we refer as SingleT-Async, is sup-
posed to have the least context switches. Table II summarizes
the context switches for each server type when it processes
one client request.1 Interested readers can check out our server
implementation from GitHub [14] for further reference.

We compare the throughput and context switches among the
four types of servers under increased workload concurrencies
and server response sizes as shown in Figure 4. Comparing
Figure 4(a) and 4(d), the maximum achievable throughput
by each server type is negatively correlated with the context
switch frequency during runtime experiments. For example,
at workload concurrency 16, sTomcat-Async-Fix outper-
forms sTomcat-Async by 22% in throughput while the con-
text switches is 34% less. In our experiments, the CPU demand
for each request is positively correlated to the response size;
small response size means small CPU computation demand,
thus the portion of CPU cycles wasted in context switches
becomes large. As a result, the gap in context switches
between sTomcat-Async-Fix and sTomcat-Async re-

1In order to simplify analyzing and reasoning, we do not count the context
switches causing by interrupting or swapping by the operating system.

0

10K

20K

30K

40K

1 4 8 16 64 100 400 1000 3200

Th
ro

ug
hp

ut
 [

re
q/

s]

Workload Concurrency [# of Connections]

SingleT-Async
sTomcat-Sync

sTomcat-Async-Fix
sTomcat-Async

(a) Throughput when response size is 0.1KB

0

2K

4K

6K

8K

10K

1 4 8 16 64 100 400 1000 3200
Workload Concurrency [# of Connections]

SingleT-Async
sTomcat-Sync

sTomcat-Async-Fix
sTomcat-Async

(b) Throughput when response size is 10KB

 0

 200

 400

 600

1 4 8 16 64 100 400 1000 3200
Workload Concurrency [# of Connections]

SingleT-Async
sTomcat-Sync

sTomcat-Async-Fix
sTomcat-Async

(c) Throughput when response size is 100KB

0

40K

80K

120K

160K

1 4 8 16 64 100 400 1000 3200

Co
nt

ex
t

Sw
itc

hi
ng

 [
/s

]

Workload Concurrency [# of Connections]

SingleT-Async
sTomcat-Sync

sTomcat-Async-Fix
sTomcat-Async

(d) Context switch when response size is 0.1KB

0

20K

40K

60K

80K

100K

1 4 8 16 64 100 400 1000 3200
Workload Concurrency [# of Connections]

SingleT-Async
sTomcat-Sync

sTomcat-Async-Fix
sTomcat-Async

(e) Context switch when response size is 10KB

0

2K

4K

6K

8K

10K

1 4 8 16 64 100 400 1000 3200
Workload Concurrency [# of Connections]

SingleT-Async
sTomcat-Sync

sTomcat-Async-Fix
sTomcat-Async

(f) Context switch when response size is 100KB
Fig. 4: Throughput and context switch comparison among different server architectures as the server response size
increases from 0.1KB to 100KB. (a) and (d) show that the maximum achievable throughput by each server type is negatively
correlated with their context switch freqency when the server response size is small (0.1KB). However, as the response size
increases to 100KB, (c) shows sTomcat-Sync outperforms other asynchronous servers before the workload concurrency
400, indicating factors other than context switches cause overhead in asynchronous servers.

flects their throughput difference. Such hypothesis is fur-
ther validated by the performance of SingleT-Async and
sTomcat-Sync, which outperform sTomcat-Async by
91% and 57% in throughput, respectively (see Figure 4(a)).
Such performance difference is also because of less context
switches as shown in Figure 4(d). For example, the context
switches of SingleT-Async is a few hundred per second,
three orders of magnitude less than that of sTomcat-Async.

We note that as the server response size becomes larger, the
portion of CPU overhead caused by context switches becomes
smaller since more CPU cycles will be consumed by process-
ing request and sending response. This is the case as shown
in Figure 4(b) and 4(c), where the response sizes are 10KB
and 100KB, respectively. The throughput difference becomes
narrower among the four server architectures, indicating less
performance impact from context switches.

In fact, one interesting phenomenon has been observed
as the response size increases to 100KB. Figure 4(c) shows
that SingleT-Async performs worse than the thread-based
sTomcat-Sync before the workload concurrency 400, even
though SingleT-Async has much less context switches
than sTomcat-Sync as shown in Figure 4(f). Such obser-
vation suggests that there are other factors causing overhead
in asynchronous SingleT-Async but not in thread-based
sTomcat-Sync when the server response size is large,
which we will discuss in the next section.

IV. WRITE-SPIN PROBLEM OF ASYNCHRONOUS
INVOCATION

In this section, we study the performance degradation prob-
lem of an asynchronous server sending a large size response.

We use fine-grained profiling tools such as Collectl [2] and
JProfiler [4] to analyze the detailed CPU usage and some key
system calls invoked by servers with different architectures.
As we found out that it is the default small TCP send
buffer size and the TCP wait-ACK mechanism that leads
to a severe write-spin problem when sending a relatively
large size response, which causes significant CPU overhead
for asynchronous servers. We also explored several network-
related factors that could exaggerate the negative impact of the
write-spin problem, which further degrades the performance of
an asynchronous server.

A. Profiling Results

Recall that Figure 4(a) shows when the response size
is small (i.e. 0.1KB), the throughput of the asynchronous
SingleT-Async is 20% higher than the thread-based
sTomcat-Sync at workload concurrency 8. However, as re-
sponse size increases to 100KB, SingleT-Async through-
put is surprisingly 31% lower than sTomcat-Sync under
the same workload concurrency 8 (see Figure 4(c)). Since
the only change is the response size, it is natural to specu-
late that large response size brings significant overhead for
SingleT-Async, but not for sTomcat-Sync.

To investigate the performance degradation of
SingleT-Async when the response size is large, we
first use Collectl [2] to analyze the detailed CPU usage
of the server with different server response sizes as
shown in Table III. The workload concurrency for both
SingleT-Async and sTomcat-Sync is 100 and the
CPU is 100% utilized under this workload concurrency.
As the response size for both server architectures increased

TABLE III: SingleT-Async consumes more user-space
CPU compared to sTomcat-Sync. The workload concur-
rency keeps 100.

Server Type sTomcat-Sync SingleT-Async

Response Size 0.1KB 100KB 0.1KB 100KB
Throughput [req./sec] 35000 590 42800 520
User total % 55% 80% 58% 92%
System total % 45% 20% 42% 8%

TABLE IV: The write-spin problem occurs when the
response size is 100KB. This table shows the measurement
of total number of socket.write() in SingleT-Async
with different response size during a one-minute experiment.

Resp. size # req. # # write()
socket.write() per req.

0.1KB 238530 238530 1
10KB 9400 9400 1
100KB 2971 303795 102

from 0.1KB to 100KB, the table shows the user-space CPU
utilization of sTomcat-Sync increases 25% (from 55% to
80%) while 34% (from 58% to 92%) for SingleT-Async.
Such comparison suggests that increasing response size has
more impact on the asynchronous SingleT-Async than the
thread-based sTomcat-Sync in user-space CPU utilization.

We further use JProfiler [4] to profile the SingleT-Async
case when the response size increases from 0.1KB to 100KB
and see what has changed in application level. We found that
the frequency of socket.write() system call is especially
high in the 100KB case as shown in Table IV. We note that
socket.write() is called when a server sends a response
back to the corresponding client. In the case of a thread-
based server like sTomcat-Sync, socket.write() is
called only once for each client request. While such one
write per request is true for the 0.1KB and 10KB case
in SingleT-Async, it calls socket.write() averagely
102 times per request in the 100KB case. System calls in
general are expensive due to the related kernel crossing over-
head [20] [39], thus high frequency of socket.write() in
the 100KB case helps explain high user-space CPU overhead
in SingleT-Async as shown in Table III.

Our further analysis shows that the multiple socket write
problem of SingleT-Async is due to the small TCP send
buffer size (16K by default) for each TCP connection and the
TCP wait-ACK mechanism. When a processing thread tries
to copy 100KB data from the user space to the kernel space
TCP buffer through the system call socket.write(), the
first socket.write() can only copy at most 16KB data to
the send buffer, which is organized as a byte buffer ring. A
TCP sliding window is set by the kernel to decide how much
data can actually be sent to the client; the sliding window
can move forward and free up buffer space for new data to be
copied in only if the server receives the ACKs of the previously
sent-out packets. Since socket.write() is a non-blocking
system call in SingleT-Async, every time it returns how
many bytes are written to the TCP send buffer; the system

Client

Receive Buffer Read from socket

Parsing and encoding

Write to socket

sum < data size

syscall

syscall

syscall

Return # of
bytes written

Return zero

U
n

exp
ected

 W
ait fo

r TC
P

 A
C

K
s. . .

Server

Ti
m

e

Write to socket

sum < data size

Write to socket

sum < data size

The worker thread
write-spins until ACKs
come back from client

Data Copy to
Kernel Finish

Return # of
bytes written

Fig. 5: Illustration of the write-spin problem in an asyn-
chronous server. Due to the small TCP send buffer size and
the TCP wait-ACK mechanism, a worker thread write-spins on
the system call socket.write() and can only send more
data until ACKs back from the client for previous sent packets.

call will return zero if the TCP send buffer is full, leading
to the write-spin problem. The whole process is illustrated
in Figure 5. On the other hand, when a worker thread in the
synchronous sTomcat-Sync tries to copy 100KB data from
the user space to the kernel space TCP send buffer, only one
blocking system call socket.write() is invoked for each
request; the worker thread will wait until the kernel sends the
100KB response out and the write-spin problem is avoided.

An intuitive solution is to increase the TCP send buffer size
to the same size as the server response to avoid the write-spin
problem. Our experimental results actually show the effective-
ness of manually increasing the TCP send buffer size to solve
the write-spin problem for our RUBBoS workload. However,
several factors make setting a proper TCP send buffer size
a non-trivial challenge in practice. First, the response size of
an internet server can be dynamic and is difficult to predict
in advance. For example, the response of a Tomcat server
may involve dynamic content retrieved from the downstream
database, the size of which can range from hundreds of bytes
to megabytes. Second, HTTP/2.0 enables a web server to push
multiple responses for a single client request, which makes the
response size for a client request even more unpredictable [19].
For example, the response of a typical news website (e.g.,
CNN.com) can easily reach tens of megabytes resulting from
a large amount of static and dynamic content (e.g., images
and database query results); all these content can be pushed
back by answering one client request. Third, setting a large
TCP send buffer for each TCP connection to prepare for the
peak response size consumes a large amount of memory of
the server, which may serve hundreds or thousands of end
users (each has one or a few persistent TCP connections); such
over-provisioning strategy is expensive and wastes computing
resources in a shared cloud computing platform. Thus it is
challenging to set a proper TCP send buffer size in advance

 0

 100

 200

 300

 400

~0ms ~5ms ~10ms ~20ms

Th
ro

ug
hp

ut
 [

re
q/

s]

Network Latency

SingleT-Async-100KB
SingleT-Async-autotuning

Fig. 6: Write-spin problem still exists when TCP send
buffer “autotuning” feature enabled.

and prevent the write-spin problem.
In fact, Linux kernels above 2.4 already provide an auto-

tuning function for TCP send buffer size based on the runtime
network conditions. Once turned on, the kernel dynamically
resizes a server’s TCP send buffer size to provide optimized
bandwidth utilization [25]. However, the auto-tuning function
aims to efficiently utilize the available bandwidth of the link
between the sender and the receiver based on Bandwidth-
Delay Product rule [17]; it lacks sufficient application infor-
mation such as response size. Therefore, the auto-tuned send
buffer could be enough to maximize the throughput over the
link but still inadequate for applications, which may still cause
the write-spin problem for asynchronous servers. Figure 6
shows SingleT-Async with auto-tunning performs worse
than the other case with a fixed large TCP send buffer size
(100kB), suggesting the occurrence of the write-spin problem.
Our further study also shows the performance difference is
even bigger if there is non-trivial network latency between the
client and the server, which is the topic of the next subsection.

B. Network Latency Exaggerates the Write-Spin Problem

Network latency is common in cloud data centers. Con-
sidering the component servers in an n-tier application that
may run on VMs located in different physical nodes across
different racks or even data centers, which can range from
a few milliseconds to tens of milliseconds. Our experimental
results show that the negative impact of the write-spin problem
can be significantly exaggerated by the network latency.

The impact of network latency on the performance of
different types of servers is shown in Figure 7. In this set of
experiments we keep the workload concurrency from clients to
be 100 all the time. The response size of each client request is
100KB; the TCP send buffer size of each server is the default
16KB, with which an asynchronous server encounters the
write-spin problem. We use the Linux command “tc(Traffic
Control)” in the client side to control the network latency
between the client and the server. Figure 7(a) shows that the
throughput of the asynchronous servers SingleT-Async
and sTomcat-Async-Fix is sensitive to network latency.
For example, when the network latency is 5ms, the throughput
of SingleT-Async decreases by about 95%, which is
surprising considering the small amount of latency increased.

We found that the surprising throughput degradation results
from the response time amplification when the write-spin
problem happens. This is because sending a relatively large
size response requires multiple rounds of data transfer due to

0

200

400

600

800

~0ms ~5ms ~10ms ~20ms

Th
ro

ug
hp

ut
 [

re
q/

se
c]

Network Latency

SingleT-Async
sTomcat-Async-Fix

sTomcat-Sync

(a) Throuthput comparison

 0

 3

 6

 9

 12

 15

~0ms ~5ms ~10ms ~20ms

R
es

po
ns

e
Ti

m
e

[s
]

Network Latency

SingleT-Async
sTomcat-Async-Fix

sTomcat-Sync

(b) Response time comparison
Fig. 7: Throughput degradation of two asynchronous
servers in subfigure (a) resulting from the response time
amplification in (b) as the network latency increases.

the small TCP send buffer size, each data transfer has to wait
until the server receives the ACKs from the previously sent-out
packets (see Figure 5). Thus a small network latency increase
can amplify a long delay for completing one response transfer.
Such response time amplification for asynchronous servers can
be seen in Figure 7(b). For example, the average response time
of SingleT-Async for a client request increases from 0.18
seconds to 3.60 seconds when 5 milliseconds network latency
is added. According to Little’s Law, a server’s throughput is
negatively correlated with the response time of the server given
that the workload concurrency (queued requests) keeps the
same. Since we always keep the workload concurrency for
each server to be 100, server response time increases 20 times
(from 0.18 to 3.60) means 95% decrease in server throughput
in SingleT-Async as shown in Figure 7(a).

V. SOLUTION

So far we have discussed two problems of asynchronous
invocation: the context switch problem caused by ineffi-
cient event processing flow (see Table II) and the write-
spin problem resulting from the unpredictable response size
and the TCP wait-ACK mechanism (see Figure 5). Though
our research is motivated by the performance degradation
of the latest asynchronous Tomcat, we found that the in-
appropriate event processing flow and the write-spin prob-
lems widely exist in other popular open-source asynchronous
application servers/middleware, including network framework
Grizzly [11] and application server Jetty [3].

An ideal asynchronous server architecture should avoid both
problems under various workload and network conditions. We
first investigate a popular asynchronous network I/O library
named Netty [7] which is supposed to mitigate the context
switch overhead through an event processing flow optimiza-
tion and the write-spin problem of asynchronous messaging
through write operation optimization, but with non-trivial
optimization overhead. Then we propose a hybrid solution
which takes advantage of different types of asynchronous
servers aiming to solve both the context switch overhead and
the write-spin problem while avoid the optimization overhead.

A. Mitigating Context Switches and Write-Spin Using Netty

Netty is an asynchronous event-driven network I/O frame-
work which provides optimized read and write operations in

syscall Write to socket

Conditions

1. Return_size != 0 &&
2. writeSpin < TH &&
3. sum < data size

Application ThreadKernel

Next Event Processing

Data Copy to
Kernel Finish

True

Data Sending Finish

Data to
be written

False

False

syscall

Fig. 8: Netty mitigates the write-spin problem by runtime
checking. The write spin jumps out of the loop if any of the
three conditions is not met.

order to mitigate the context switch overhead and the write-
spin problem. Netty adopts the second design strategy (see
Section II-A) to support an asynchronous server: using a
reactor thread to accept new connections and a worker thread
pool to process the various I/O events from each connection.

Though using a worker thread pool, Netty makes two signif-
icant changes compared to the asynchronous TomcatAsync
to reduce the context switch overhead. First, Netty changes
the role of the reactor thread and the worker threads. In
the asynchronous TomcatAsync case, the reactor thread
is responsible to monitor events for each connection (event
monitoring phase), then it dispatches each event to an avail-
able worker thread for proper event handling (event handling
phase). Such dispatching operation always involves the context
switches between the reactor thread and a worker thread.
Netty optimizes this dispatching process by letting a worker
thread take care of both event monitoring and handling; the
reactor thread only accepts new connections and assigns the
established connections to each worker thread. In this case, the
context switches between the reactor thread and the worker
threads are significantly reduced. Second, instead of having
a single event handler attached to each event, Netty allows a
chain of handlers to be attached to one event; the output of
each handler is the input to the next handler (pipeline). Such
a design avoids generating unnecessary intermediate events
and the associate system calls, thus reducing the unnecessary
context switches between reactor thread and worker threads.

In order to mitigate the write-spin problem, Netty
adopts a write-spin checking when a worker thread calls
socket.write() to copy a large size response to the kernel
as shown in Figure 8. Concretely, each worker thread in Netty
maintains a writeSpin counter to record how many times
it has tried to write a single response into the TCP send
buffer. For each write, the worker thread also tracks how many
bytes have been copied, noted as return_size. The worker
thread will jump out the write spin if either of two conditions
is met: first, the return_size is zero, indicating the TCP
send buffer is already full; second, the counter writeSpin
exceeds a pre-defined threshold (the default value is 16 in

 0

 200

 400

 600

 800

1 4 8 16 64 100 400 10003200

T
hr

ou
gh

pu
t [

re
q/

s]

Workload Concurrency [# of Connections]

SingleT-Async
NettyServer

sTomcat-Sync

(a) Response size is 100KB.

0

10K

20K

30K

40K

1 4 8 16 64 100 400 10003200

T
hr

ou
gh

pu
t [

re
q/

s]

Workload Concurrency [# of Connections]

SingleT-Async
NettyServer

sTomcat-Sync

(b) Response size is 0.1KB.

Fig. 9: Throughput comparison under various workload
concurrencies and response sizes. The default TCP send
buffer size is 16KB. Subfigure (a) shows that NettyServer
performs the best, suggesting effective mitigation of the write-
spin problem, and (b) shows that NettyServer performs
worse than SingleT-Async indicating non-trivial write
optimization overhead in Netty.

Netty-v4). Once jumping out, the worker thread will save
the context and resume the current connection data transfer
after it loops over other connections with pending events.
Such write optimization is able to mitigate the blocking of
the worker thread by a connection transferring a large size
response, however, it also brings non-trivial overhead when
all responses are small and there is no write-spin problem.

We validate the effectiveness of Netty for mitigating the
write-spin problem and also the associate optimization over-
head in Figure 9. We build a simple application server
based on Netty, named NettyServer. This figure compares
NettyServer with the asynchronous SingleT-Async
and the thread-based sTomcat-Sync under various work-
load concurrencies and response sizes. The default TCP send
buffer size is 16KB, so there is no write-spin problem when the
response size is 0.1KB, and severe write-spin problem in the
100KB case. Figure 9(a) shows that NettyServer performs
the best among three in the 100KB case; for example, when the
workload concurrency is 100, NettyServer outperforms
SingleT-Async and sTomcat-Sync by about 27% and
10% in throughput respectively, suggesting NettyServer’s
write optimization effectively mitigates the write-spin problem
encountered by SingleT-Async and also avoids the heavy
multi-threading overhead encountered by sTomcat-Sync.
On the other hand, Figure 9(b) shows that the maximum
achievable throughput of NettyServer is 17% less than that
of SingleT-Async in the 0.1KB response case, indicating
non-trivial overhead of unnecessary write operation optimiza-
tion when there is no write-spin problem. Therefore, neither
NettyServer nor SingleT-Async is able to achieve the
best performance under various workload conditions.

B. A Hybrid Solution

In the previous section, we showed that the asynchronous
solutions, if chosen properly (see Figure 9), can always out-
perform the corresponding thread-based version under various
workload conditions. However, there is no single asynchronous
solution that can always perform the best. For example,
SingleT-Async suffers from the write-spin problem for

Select()

Pool of connections
with pending events

Conn is available?

Check req type

Parsing and
encoding

Parsing and
encoding

Write operation
optimization

Socket.write()

Return to Return to

No

NettyServer SingleT-Async

Event Monitoring Phase

Event Handling Phase

Yes

get next conn *

Fig. 10: Worker thread processing flow in Hybrid solution.

large size responses while NettyServer suffers from the
unnecessary write operation optimization overhead for small
size responses. In this section, we propose a hybrid solution
which utilizes both SingleT-Async and NettyServer
and adapts to workload and network conditions.

Our hybrid solution is based on two assumptions:
• The response size of the server is unpredictable and can

vary during runtime.
• The workload is in-memory workload.

The first assumption excludes the server being initiated with
a large but fixed TCP send buffer size for each connection
in order to avoid the write-spin problem. This assumption is
reasonable because of the factors (e.g., dynamically generated
response and the push feature in HTTP/2.0) we have discussed
in Section IV-A. The second assumption excludes a worker
thread being blocked by disk I/O activities. This assumption is
also reasonable since in-memory workload becomes common
for modern internet services because of near-zero latency
requirement [30], for example, MemCached server has been
widely adopted to reduce disk activities [36]. The solution
for more complex workloads that involve frequent disk I/O
activities is challenging and will require additional research.

The main idea of the hybrid solution is to take advan-
tage of different asynchronous server architectures such as
SingleT-Async and NettyServer to handle requests
with different response sizes and network conditions as shown
in Figure 10. Concretely, our hybrid solution, which we call
HybridNetty, profiles different types of requests based on
whether or not the response causes a write-spin problem during
the runtime. In initial warm-up phase (i.e., workload is low),
HybridNetty uses the writeSpin counter of the original
Netty to categorize all requests into two categories: the heavy
requests that can cause the write-spin problem and the light
requests that can not. HybridNetty maintains a map object
recording which category a request belongs to. Thus when
HybridNetty receives a new incoming request, it checks the
map object first and figures out which category it belongs to
and then chooses the most efficient execution path. In practice
the response size even for the same type of requests may
change over time (due to runtime environment changes such
as dataset), so we update the map object during runtime once

a request is detected to be classified into a wrong category in
order to keep track of the latest category of such requests.

C. Validation of HybridNetty

To validate the effectiveness of our hybrid solution, Fig-
ure 11 compares HybridNetty with SingleT-Async
and NettyServer under various workload conditions and
network latencies. Our workload consists of two classes of
requests: the heavy requests which have large response sizes
(e.g., 100KB) and the light requests which have small response
size (e.g., 0.1KB); heavy requests can cause the write-spin
problem while light requests can not. We increase the percent-
age of heavy requests from 0% to 100% in order to simulating
different scenarios of realistic workloads. The workload con-
currency from clients in all cases keeps 100, under which the
server CPU is 100% utilized. To clearly show the effectiveness
of our hybrid solution, we adopt the normalized throughput
comparison and use the HybridNetty throughput as the
baseline. Figure 11(a) and 11(b) show that HybridNetty
behaves the same as SingleT-Async when all requests are
light (0% heavy requests) and the same as NettyServer
when all requests are heavy; other than that HybridNetty
always performs the best. For example, Figure 11(a) shows
that when the heavy requests reach to 5%, HybridNetty
achieves 30% higher throughput than SingleT-Async and
10% higher throughput than NettyServer. This is because
HybridNetty always chooses the most efficient path to pro-
cess request. Considering that the distribution of requests for
real web applications typically follows a Zipf-like distribution,
where light requests dominate the workload [22], our hybrid
solution makes more sense in dealing with realistic workload.
In addition, SingleT-Async performs much worse than the
other two cases when the percentage of heavy requests is non-
zero and non-negligible network latency exists (Figure 11(b)).
This is because of the write-spin problem exaggerated by
network latency (see Section IV-B for more details).

VI. RELATED WORK

Previous research has shown that a thread-based server,
if implemented properly, can achieve the same or even bet-
ter performance as the asynchronous event-driven one does.
For example, Von et al. develop a thread-based web server
Knot [40] which can compete with event-driven servers at high
concurrency workload using a scalable, user-level threading
package Capriccio [41]. However, Krohn et al. [32] show that
Capriccio is a cooperative threading package that exports the
POSIX thread interface but behaves like events to the underly-
ing operating system. The authors of Capriccio also admit that
the thread interface is still less flexible than events [40]. These
previous research results suggest that the asynchronous event-
driven architecture will continue to play an important role in
building high performance and resource efficiency servers that
meet the requirements of current cloud data centers.

The optimization for asynchronous event-driven servers can
be divided into two broad categories: improving operating
system support and tuning software configurations.

0

0.2

0.4

0.6

0.8

1.0

0% 2% 5% 10% 20% 100%

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Ratio of Large Size Response

SingleT-Async NettyServer HybridNetty

(a) No network latency between client and server

0

0.2

0.4

0.6

0.8

1.0

0% 2% 5% 10% 20% 100%

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Ratio of Large Size Response

SingleT-Async NettyServer HybridNetty

(b) ∼5ms network latency between client and server

Fig. 11: Hybrid solution performs the best in different mixes of light/heavy request workload with or without network
latency. The workload concurrency keeps 100 in all cases. To clearly show the throughput difference, we compare the normalized
throughput and use HybridNetty as the baseline.

Improving operating system support mainly focuses
on either refining underlying event notification mecha-
nisms [18] [34] or simplifying the interfaces of network I/O
for application level asynchronous programming [27]. These
research efforts have been motivated by reducing the overhead
incurred by system calls such as select, poll, epoll, or I/O
operations under high concurrency workload. For example, to
avoid the kernel crossings overhead caused by system calls,
TUX [34] implements a kernel-based web server by integrating
the event monitoring and event handling into the kernel. Han
et al. [27] implement MegaPipe as a new interface (API)
for efficient, scalable network I/O by providing lightweight
sockets to application level programming.

Tuning software configurations to improve asynchronous
web servers’ performance has also been studied before. For
example, Pariag et al. [38] show that the maximum achievable
throughput of event-driven (µServer) and pipeline (WatPipe)
servers can be significantly improved by carefully tuning the
number of simultaneous TCP connections and blocking/non-
blocking sendfile system call. Brecht et al. [21] improve
the performance of event-driven µServer by modifying the
strategy of accepting new connections based on different
workload characteristics. Our work is closely related to Google
team’s research about TCP’s congestion window [24]. They
show that increasing TCP’s initial congestion window to at
least ten segments (about 15KB) can improve average latency
of HTTP responses by approximately 10% in large-scale
Internet experiments. However, their work mainly focuses on
short-lived TCP connections. Our work complements their
research but focuses on more general network conditions.

VII. CONCLUSIONS

We studied the performance impact of asynchronous in-
vocation on client-server systems. Through realistic macro-
and micro-benchmarks, we showed that servers with the
asynchronous event-driven architecture may perform signif-
icantly worse than the thread-based version resulting from
the inferior event processing flow which creates high context
switch overhead (Section II and III). We also studied a general
problem for all the asynchronous event-driven servers: the
write-spin problem when handling large size responses and

HTTP
Requests

Apache Tomcat MySQLClients

(b). 1/1/1 Sample Topology

(a). Software and Hardware Setup

Fig. 12: Details of the RUBBoS experimental setup.

the associate exaggeration factors such as network latency
(Section IV). Since there is no one solution fits all, we
provide a hybrid solution by utilizing different asynchronous
architectures to adapt to various workload and network condi-
tions (Section V). More generally, our research suggests that
building high performance asynchronous event-driven servers
needs to take both the event processing flow and the runtime
varying workload/network conditions into consideration.

APPENDIX A
RUBBOS EXPERIMENTAL SETUP

We adopt the RUBBoS standard n-tier benchmark, which
is modeled after the famous news website Slashdot. The
workload consists of 24 different web interactions. The default
workload generator emulates a number of users interacting
with the web application layer. Each user’s behavior follows a
Markov chain model to navigate between different web pages;
the think time between receiving a web page and submitting a
new page download request is about 7-second. Such workload
generator has a similar design as other standard n-tier bench-
marks such as RUBiS [13], TPC-W [15], and Cloudstone [29].
We run the RUBBoS benchmark on our testbed. Figure 12
outlines the software configurations, hardware configurations,
and a sample 3-tier topology used in the Subsection II-B
experiments. Each server in the 3-tier topology is deployed
in a dedicated machine. All other client-server experiments
are conducted with one client and one server machine.

REFERENCES

[1] Apache JMeterTM. http://jmeter.apache.org.
[2] Collectl. http://collectl.sourceforge.net/.
[3] Jetty: A Java HTTP (Web) Server and Java Servlet Container. http:

//www.eclipse.org/jetty/.
[4] JProfiler: The award-winning all-in-one Java profiler. ”https://www.

ej-technologies.com/products/jprofiler/overview.html”.
[5] lighttpd. https://www.lighttpd.net/.
[6] MongoDB Async Java Driver. http://mongodb.github.io/

mongo-java-driver/3.5/driver-async/.
[7] Netty. http://netty.io/.
[8] nginx: a high performance HTTP and reverse proxy server, as well as

a mail proxy server. https://nginx.org/en/.
[9] Node.js. https://nodejs.org/en/.

[10] Oracle GlassFish Server. http://www.oracle.com/technetwork/
middleware/glassfish/overview/index.html.

[11] Project Grizzly: NIO Event Development Simplified. https://javaee.
github.io/grizzly/.

[12] RUBBoS: Bulletin board benchmark. http://jmob.ow2.org/rubbos.html.
[13] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
[14] sTomcat-NIO, sTomcat-BIO, and two alternative asynchronous

servers. https://github.com/sgzhang/AsynMessaging.
[15] TPC-W: A Transactional Web e-Commerce Benchmark. http://www.tpc.

org/tpcw/.
[16] ADLER, S. The slashdot effect: an analysis of three internet publications.

Linux Gazette 38 (1999), 2.
[17] ALLMAN, M., PAXSON, V., AND BLANTON, E. Tcp congestion control.

Tech. rep., 2009.
[18] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource containers: A

new facility for resource management in server systems. In Proceedings
of the Third Symposium on Operating Systems Design and Implemen-
tation (Berkeley, CA, USA, 1999), OSDI ’99, USENIX Association,
pp. 45–58.

[19] BELSHE, M., THOMSON, M., AND PEON, R. Hypertext transfer
protocol version 2 (http/2).

[20] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y., KAASHOEK, F.,
MORRIS, R., PESTEREV, A., STEIN, L., WU, M., DAI, Y., ZHANG,
Y., AND ZHANG, Z. Corey: An operating system for many cores.
In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2008), OSDI’08,
USENIX Association, pp. 43–57.

[21] BRECHT, T., PARIAG, D., AND GAMMO, L. Acceptable strategies
for improving web server performance. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference (Berkeley, CA,
USA, 2004), ATEC ’04, USENIX Association, pp. 20–20.

[22] BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S.
Web caching and zipf-like distributions: Evidence and implications.
In INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE (1999),
vol. 1, IEEE, pp. 126–134.

[23] CAÑAS, C., ZHANG, K., KEMME, B., KIENZLE, J., AND JACOBSEN,
H.-A. Publish/subscribe network designs for multiplayer games. In
Proceedings of the 15th International Middleware Conference (New
York, NY, USA, 2014), Middleware ’14, ACM, pp. 241–252.

[24] DUKKIPATI, N., REFICE, T., CHENG, Y., CHU, J., HERBERT, T.,
AGARWAL, A., JAIN, A., AND SUTIN, N. An argument for increasing
tcp’s initial congestion window. SIGCOMM Comput. Commun. Rev. 40,
3 (June 2010), 26–33.

[25] FISK, M., AND FENG, W.-C. Dynamic right-sizing in tcp. http://lib-
www. lanl. gov/la-pubs/00796247. pdf (2001), 2.

[26] GARRETT, J. J., ET AL. Ajax: A new approach to web applications.
[27] HAN, S., MARSHALL, S., CHUN, B.-G., AND RATNASAMY, S.

Megapipe: A new programming interface for scalable network i/o. In
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 135–148.

[28] HARJI, A. S., BUHR, P. A., AND BRECHT, T. Comparing high-
performance multi-core web-server architectures. In Proceedings of the
5th Annual International Systems and Storage Conference (New York,
NY, USA, 2012), SYSTOR ’12, ACM, pp. 1:1–1:12.

[29] HASSAN, O. A.-H., AND SHARGABI, B. A. A scalable and efficient
web 2.0 reader platform for mashups. Int. J. Web Eng. Technol. 7, 4
(Dec. 2012), 358–380.

[30] HUANG, Q., BIRMAN, K., VAN RENESSE, R., LLOYD, W., KUMAR, S.,
AND LI, H. C. An analysis of facebook photo caching. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2013), SOSP ’13, ACM, pp. 167–181.

[31] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2010), USENIXATC’10, USENIX Association,
pp. 11–11.

[32] KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Events can make
sense. In 2007 USENIX Annual Technical Conference on Proceedings of
the USENIX Annual Technical Conference (Berkeley, CA, USA, 2007),
ATC’07, USENIX Association, pp. 7:1–7:14.

[33] KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Simplified event
programming for busy network applications. In Proceedings of the 2007
USENIX Annual Technical Conference (Santa Clara, CA, USA (2007).

[34] LEVER, C., ERIKSEN, M. A., AND MOLLOY, S. P. An analysis of
the tux web server. Tech. rep., Center for Information Technology
Integration, 2000.

[35] LI, C., SHEN, K., AND PAPATHANASIOU, A. E. Competitive prefetch-
ing for concurrent sequential i/o. In Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007
(New York, NY, USA, 2007), EuroSys ’07, ACM, pp. 189–202.

[36] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
memcache at facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX, pp. 385–398.

[37] PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. Flash: An efficient
and portable web server. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference (Berkeley, CA, USA, 1999),
ATEC ’99, USENIX Association, pp. 15–15.

[38] PARIAG, D., BRECHT, T., HARJI, A., BUHR, P., SHUKLA, A., AND
CHERITON, D. R. Comparing the performance of web server archi-
tectures. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (New York, NY, USA, 2007),
EuroSys ’07, ACM, pp. 231–243.

[39] SOARES, L., AND STUMM, M. Flexsc: Flexible system call scheduling
with exception-less system calls. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2010), OSDI’10, USENIX Association, pp. 33–46.

[40] VON BEHREN, R., CONDIT, J., AND BREWER, E. Why events are
a bad idea (for high-concurrency servers). In Proceedings of the 9th
Conference on Hot Topics in Operating Systems - Volume 9 (Berkeley,
CA, USA, 2003), HOTOS’03, USENIX Association, pp. 4–4.

[41] VON BEHREN, R., CONDIT, J., ZHOU, F., NECULA, G. C., AND
BREWER, E. Capriccio: Scalable threads for internet services. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 268–281.

[42] WELSH, M., CULLER, D., AND BREWER, E. Seda: An architecture
for well-conditioned, scalable internet services. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2001), SOSP ’01, ACM, pp. 230–243.

[43] ZELDOVICH, N., YIP, A., DABEK, F., MORRIS, R., MAZIERES, D.,
AND KAASHOEK, M. F. Multiprocessor support for event-driven
programs. In USENIX Annual Technical Conference, General Track
(2003), pp. 239–252.

http://jmeter.apache.org
http://collectl.sourceforge.net/
http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/
"https://www.ej-technologies.com/products/jprofiler/overview.html"
"https://www.ej-technologies.com/products/jprofiler/overview.html"
https://www.lighttpd.net/
http://mongodb.github.io/mongo-java-driver/3.5/driver-async/
http://mongodb.github.io/mongo-java-driver/3.5/driver-async/
http://netty.io/
https://nginx.org/en/
https://nodejs.org/en/
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
https://javaee.github.io/grizzly/
https://javaee.github.io/grizzly/
http://jmob.ow2.org/rubbos.html
http://rubis.ow2.org/
https://github.com/sgzhang/AsynMessaging
http://www.tpc.org/tpcw/
http://www.tpc.org/tpcw/

	Introduction
	Background and Motivation
	RPC vs. Asynchronous Network I/O
	Performance Degradation after Tomcat Upgrade

	Inefficient Event Processing Flow in Asynchronous Servers
	Write-Spin Problem of Asynchronous Invocation
	Profiling Results
	Network Latency Exaggerates the Write-Spin Problem

	Solution
	Mitigating Context Switches and Write-Spin Using Netty
	A Hybrid Solution
	Validation of HybridNetty

	Related Work
	Conclusions
	Appendix A: RUBBoS Experimental Setup
	References

