
Tail Amplification in n-Tier Systems: A Study of
Transient Cross-Resource Contention Attacks

Shungeng Zhang∗, Huasong Shan∗§, Qingyang Wang∗, Jianshu Liu∗, Qiben Yan†, Jinpeng Wei‡

∗Louisiana State University–Baton Rouge, †University of Nebraska–Lincoln,
‡University of North Carolina–Charlotte, §JD.com Silicon Valley R&D Center–Mountain View,

Abstract—Fast response time becomes increasingly important
for modern web applications (e.g., e-commerce) due to intense
competitive pressure. In this paper, we present a new type of
Denial of Service (DoS) Attacks in the cloud, MemCA, with the
goal of causing performance uncertainty (the long-tail response
time problem) of the target n-tier web application while keeping
stealthy. MemCA exploits the sharing nature of public cloud
computing platforms by co-locating the adversary VMs with the
target VMs that host the target web application, and causing
intermittent and short-lived cross-resource contentions on the
target VMs. We show that these short-lived cross-resource con-
tentions can cause transient performance interferences that lead
to large response time fluctuations of the target web application,
due to complex resource dependencies in the system. We further
model the attack scenario in n-tier systems based on queuing
network theory, and analyze cross-tier queue overflow and tail
response time amplification under our attacks. Through extensive
benchmark experiments in both private and public clouds (e.g.,
Amazon EC2), we confirm that MemCA can cause significant
performance uncertainty of the target n-tier system while keeping
stealthy. Specifically, we show that MemCA not only bypasses the
cloud elastic scaling mechanisms, but also the state-of-the-art
cloud performance interference detection mechanisms.

Index Terms—Performance uncertainty, n-tier systems, web
attack, millibottleneck, resource contention.

I. INTRODUCTION

Cloud computing has been predicted by Berkeley [6] as the

top one opportunity to defend against DoS attacks because of

its elasticity: “systems can scale easily to fit the dynamic user

requirements, even to serve the attack traffic”. During the past

decade a large number of websites are moved into the cloud

(e.g., Spotify [2] moved its core infrastructure to Google Cloud

on Feb. 23, 2016). However, DoS attacks are still very active

and even more severe [45], because the ever-evolving new

types of DoS attacks exploit various newly discovered network

or system vulnerabilities even in the cloud, bypassing not only

the state-of-the-art defense mechanisms [39], [59], but also the

elasticity mechanisms of cloud computing [47], [48], [54].

The new types of DoS attacks in the cloud can be catego-

rized into two classes: external and internal attacks [7], [13].

External attacks are similar to the traditional DoS attacks that

launch external attacking traffic (both application and network

level) to the target services [35], [39], [59], but with different

attacking approaches or goals to bypass the scaling capability

of the cloud. For example, an external attack may attack

third-party services (e.g., the Dyn DNS servers outside of the

cloud computing platform) that the target services rely on, or

cause partial denial of service (PDoS) of the target service

by sending pulsating but legitimate HTTP traffic to the target

system [47], [48]. In contrast, internal attacks are new-born,

which are emerging simultaneously with cloud computing and

become an important class of DoS attacks due to the sharing

nature of public cloud [7], [13]. Internal attacks can easily

mount the adversary programs in the co-located VMs [44]

(on the same host with the target VM) that cause resource

contention and performance interference of the target VM and

cause performance uncertainty of the target service [14], [60].

Existing approaches to detect and mitigate performance

interference are either provider-centric [36], [61] or user-

centric [24], [32], [33]. For provider-centric approaches, cloud

providers profile the infrastructure-level metrics from the

hosts in the cloud. Due to the requirement of a worth-

while investment of cloud providers (e.g., profiling overhead

should be under 1% [26]), cloud providers typically adopt

coarse granularity monitoring (in minutes level). For example,

the sampling interval of Amazon’s monitoring tool Cloud-

Watch [1] and Microsoft Azure Application Insights [37] is

typically 1 minute, which is incapable of detecting short-

term performance interference (e.g., < 1 minute). For user-

centric approaches, cloud tenants protect their applications

from performance interference in their rented VMs. They

may enable fine-grained monitoring (e.g., 1 second), with the

cost of non-trivial monitoring overhead, to detect short-lived

performance interference. However, user-centric approaches

typically lack host-level information (e.g., the state of the co-

located adversary VMs), thus they are unable to detect the

causes of performance interference.

In this paper, we present a new type of internal attacks

in the cloud, which can cause significant performance un-

certainty (long-tail response time) of target web applications

while bypassing the elasticity mechanisms and the interference

detection mechanisms in the cloud. Concretely, an attacker

mounts an adversary program in the co-located VMs with the

target VM that hosts the target web application; the adversary

program can cause large response time fluctuations of latency-

sensitive web applications through creating very-short-lived

(e.g., <1 second) performance interference among the co-

located VMs hosted in the same physical machine in the cloud.

Such an attack is considered a great threat for modern web

applications that require rapid responsiveness [15], [16], [46],

such as e-commerce, media streaming, and online gaming.

For example, Amazon reported that every 100ms increase in

1527

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00151

the page load decreases sales by 1% [27]; Google requires

99th percentile of its queries to finish within 500ms [12]. At

the same time, the performance interference caused by the

proposed attacks only lasts for every short time period (e.g.,

100ms) each time; from the Sampling theory, the average sys-

tem resource utilization is still at a moderate level (e.g., 50%)

using coarse granularity monitoring, thus not only avoiding the

typical triggering conditions (e.g., CPU usage > 80%) of the

cloud scaling, but also escaping the state-of-the-art detection

mechanisms of performance interference in the cloud.

To make an effective internal attack, the primary challenge

is to choose the target attack resource. In cloud environments,

the shared hardware and software resources among the co-

located VMs are essential for internal attacks, such as net-

work bandwidth [8], [30], I/O [20], last level cache [60],

memory lock [60], and CPU scheduling mechanism of the

hypervisors [62]. These shared resources are usually inter-

correlated with each other, causing cross-resource contention.

For example, network traffic affects last level cache [52]

and memory bandwidth affects CPU utilization. These cross-

resource contentions [31] significantly raise the difficulty in

tracing the cause of performance interference, increasing the

stealthiness of internal attacks. In this paper, we explore one

type of cross-resource internal attacks, in which an adversary

program intermittently triggers memory resource contention

and degrades the available memory bandwidth among the co-

located VMs, which transiently saturates the CPU of the target

VM. We name this attack MemCA (Memory Attacks on the

neighbor’s CPU).

In brief, this work makes the following contributions:

• Present a new type of internal DoS attacks named

MemCA, that can cause long-tail response time of web

applications with high stealthiness since the average

utilization of the target system is far from saturation.

• Introduce a type of cross-resource contentions that can

cause significant performance interference among the co-

located VMs in the host inside the cloud.

• Model the proposed attack scenario in n-tier systems

based on queuing network theory, and analyze cross-

tier queue overflow and tail (response time) amplification

under our attacks.

• Validate the practicality of our attacks through extensive

benchmark experiments in both private and public clouds

such as Amazon EC2, confirming both damages (e.g.,

95th percentile response time > 1 second) and stealth-

iness (bypassing elasticity mechanisms and interference

detection mechanisms in the cloud).

We outline the rest of this paper as follows. Section II dis-

cusses the background of memory resources and describes our

attack scenario and the practical impact of tail amplification.

Section III investigates two types of memory attacks: satu-

rating memory bus and triggering memory lock. Section IV

designs and implements MemCA, models the attack scenario

using queuing network theory, and analyzes the attack impacts

(e.g., tail amplification). Section V evaluates MemCA from

Fig. 1: On-chip resources shared by co-located VMs.

two aspects: damage and stealthiness. Section VI presents

related work and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATIONS

A. Shared On-Chip Resources and Resource Contention

In modern CPU architecture (see Figure 1), such as Intel

Xeon family which is widely used by today’s IaaS providers,

there exist multiple processor sockets splitting on-chip re-

sources into different packages. In the same processor package,

except for core-private L1/L2 caches, last level cache (LLC)

and memory scheduling components (e.g., memory controller

bus, bank scheduler, and channel scheduler) are all shared by

co-located VMs. The commercial cloud providers allow users

to choose VM instances with different memory size and CPU

cores [4], [38], but it is insufficient to isolate all other on-chip

memory resources, leading to potential resource contention

between co-located VMs, such as memory bandwidth, or even

cross-resource contention. For example, RFA [52] investigated

performance degradation on LLC caused by the network; LLC

contention causes co-located VMs to require more memory

bandwidth, creating a memory bandwidth contention.

In this work, we focus on one type of cross-resource

contentions: shared on-chip memory resource contention on

CPU among the co-located VMs – MemCA. This type of

cross-resource contentions is hard to detect because the cause

and the result are indirectly correlated (e.g., CPU saturation

does not mean CPU is the bottleneck, but the limited memory

bandwidth is), which is a big challenge for current detection

mechanisms [31]. In addition, typical memory metrics sup-

ported by monitoring tools (e.g., sar and collectl) cannot cover

all the memory attack cases (e.g., memory lock).

B. Threat Model and Assumptions

We consider a MemCA attack scenario, in which the ad-

versary frequently creates shared on-chip memory resource

contentions of the victim VMs in the cloud hosting the target

web system by intermittently saturating those shared on-chip

memory resources (e.g., memory bandwidth) without being

detected. Today’s software-based VMM (e.g., Xen, KVM,

VMware vSphere, and Microsoft Hyper-V) can only guarantee

secure access to virtual and physical memory pages, but do

1528

 0

 500

 1000

 1500

 2000

 60 65 70 75 80 85 90 95 100

R
es

p
o
n

se
 T

im
e

[m
s]

X−ile [%]

Public Amazon EC2

Client
Apache
Tomcat
MySQL

 0

 500

 1000

 1500

 2000

 60 65 70 75 80 85 90 95 100

R
es

p
o
n

se
 T

im
e

[m
s]

X−ile [%]

Private Cloud

Client
Apache
Tomcat
MySQL

Fig. 2: Measured tail (percentile) response time in each tier
of a 3-tier system under our MemCA attack. We observed
significant tail response time amplification from the back-
end MySQL to the front-end Apache, and eventually to
the clients. For example, obvious long-tail response time
was observed by the clients in both our private cloud and
the public Amazon EC2 environment.

not isolate on-chip memory resources shared by VMs [17]. In

this case, a MemCA attacker can increase CPU consumption

of the target VM by memory attacks in co-located adversary

VMs, even though vCPUs are isolated and protected by the

hypervisor. Finally, such an attack is able to cause performance

uncertainty of the target web system, especially cause the long-

tail response time problem in the long run.

To effectively launch a MemCA attack, we assume that

the adversary VM is able to share the same host with the

target VMs. Many previous research efforts already provide

solutions [23], [53], [58], and are orthogonal to our research.

Ristenpart’s team [53] reported the cost of achieving co-

located VMs in public IaaS cloud (average cost is from $0.137

to $5.304), and the successful rate of VM co-location (from

0.6 to 0.89). We also assume that the attacker can fully control

the rented adversary VMs, in other words, they can run any

attacking programs in the rented VMs [29], as is the case for

today’s public IaaS cloud. In addition, unlike traditional DDoS

attacks which usually require a large amount of bot machines,

a MemCA attack only requires one or a few adversary VMs

that are co-located with any component VMs that are in the

critical path of the target web system, so such an attack is

economically feasible considering the potential damage it can

bring to the target website.

C. Experimental Illustration of Attack Impact

We conduct concrete experiments to show the damaging

impact caused by MemCA using a representative 3-tier bench-

mark RUBBoS [42], deployed in both our private cloud and

the public Amazon EC2 cloud. Here we just show the attack

impact; more experimental details and explanations are avail-

able in Section V. Without our MemCA attack, the benchmark

web application responds to every client request within 100ms.

With our MemCA attach, we show the results in Figure 2. We

can see a clear tail response time amplification in each tier of

the 3-tier system, in other words, the response time of each tier

has a nonlinear tail trend as percentile increases. Meanwhile,

the tail response time of each tier amplifies from the back-end

tier (MySQL) to all the front-end tiers (Tomcat and Apache),

and eventually to the clients. For example, the 95th and 98th

percentile response time observed by the clients is longer than

1 and 2 second(s), respectively, which is considered as severe

performance damage by most e-commerce websites [12], [15],

[16], [27].

III. MEMORY ATTACK MEASUREMENTS

In this section, we investigate the performance impact of

memory attacks among the co-located VMs in a representative

host widely used by current cloud platforms.

Experiment Methodology. In our private cloud, we use 3

machines to build our profiling environment, each of which

equips with a 12-core, 2-package 1.60 GHz Intel Xeon CPU

E5-2603 v3 with 15MB LLC per package and 16GB of main

memory, a type of processors in Intel Xeon family that is

widely used to host VM instances by Amazon EC2 [4]. Our

private cloud is managed by OpenStack Ocata; each VM,

running CentOS release 6.7, is managed by KVM [28].

To measure the performance impact of memory attacks

among the co-located VMs, we exploit two approaches to

launch memory attacks: (1) saturating memory bus through

memory benchmarking tools [24], and (2) locking memory

access through unaligned atomic operations [60]. At the same

time, we measure available memory bandwidth which can be

used by each co-located VM as an evaluation metric to assess

performance interference caused by memory attacks.

The program to measure memory bandwidth of the host

is RAMspeed, a cache and memory benchmarking tool [19].

As we have 6 cores per package in our host, we deploy 6

co-located VMs, each with one vCPU. To comprehensively

understand the impact of memory attacks on shared memory

bandwidth in modern CPU architecture (see Figure 1), we

execute attack programs and measure memory bandwidth in

two scenarios:

1) Same package, 6 VMs each pinned to a separate core

on the same package, which share last-level cache and

memory bandwidth per package.

2) Random package, 6 VMs floating over 12 cores on

two packages, which share last-level cache and memory

bandwidth of both packages. This case represents the

common practice in a real cloud computing platform

aiming to increase the level of sharing resources.

Results of Memory Bandwidth Contention among Co-
located VMs. Figure 3 depicts measured available memory

bandwidth used by each co-located VM in the same and ran-

dom package under memory attacks through either saturating

memory bus or locking memory access. We summarize several

main results for building MemCA.

1) One VM running the attack program does not saturate

the memory bus, since memory bandwidth in modern

processors is high enough to host two co-located VMs.

1529

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6

N
o
rm

a
li

ze
d

 A
v
a
il

a
b

le
 M

em
.
B

W
 p

er
 V

M

of Co−located VMs
(1) Saturate Memory Bus

Same Pkg
Random Pkg

 0

 0.2

 0.4

 0.6

 0.8

 1

(2) Lock Memory

Fig. 3: Memory bandwidth degradation under two types of
memory attacks. (1) As co-located VMs increases, available

memory bandwidth used by each VM decreases. (2) Locking

memory (launched by 1 VM) is more effective in degrading

available memory bandwidth than saturating memory bus.

2) As co-located VMs increases, available memory band-

width used by each VM decreases in same package case.

In the random package case, the trend is similar, but the

degradation level is lower, since the capacity of memory

bus in two packages is twice as that in the same package.

3) Locking memory access is more effective to degrade

available memory bandwidth than saturating memory

bus since memory access from other applications are

completely blocked until the locked action is done.

The above memory attack experiments are all conducted in

the KVM platform. To further confirm that the effectiveness of

these memory attacks in co-located VMs is not related to any

specific hypervisor, we also conduct similar experiments in

different platforms managed by different popular hypervisors

(e.g., Xen, VMware, and Hyper-V). We get similar results

under the same memory attacks as shown in Figure 3.

IV. MEMCA

A. MemCA Overview

Through memory attack experiments in Section III, we

profile the capacity of the target host and determine the

attack intensity of the adversary program. A recent research

effort [60] has introduced the performance impact of brute

force memory attacks for co-located VMs. However, such at-

tacks can be detected by sophisticated state-of-the-art detection

mechanisms [32], [33], [61]. Here we exploit these previous

brute force memory attack techniques and design a much more

stealthy internal attack, MemCA.

The main idea of MemCA is to saturate or degrade the

shared resources (e.g., memory bandwidth) quickly within a

very short time period (e.g., tens to hundreds of milliseconds)

while bypassing the typical coarse-grained monitoring based

detection mechanisms (e.g., second or minute) [32], [33]. Then

MemCA intermittently repeats this attack process to cause

the long-lasting threat to the target system performance. In

other words, MemCA creates very short resource contention

Fig. 4: An illustration of MemCA bursts.

bursts in an ON-OFF style (Figure 4) to create performance

uncertainty. We formally propose MemCA as follows:

Effect = A(R,L, I) (1)
where,

• Effect is the measurement of the attack impact. We use

percentile response time as the metric to measure the tail

response time of the target system (e.g., 95th percentile

response time > 1s).

• R is the intensity of resource consumption per interfer-

ence attack burst. R should be large enough to temporar-

ily saturate or degrade shared resource (e.g., memory

bandwidth) in the servers of the cloud.

• L is the lasting period (length) of each interference burst.

L should be short enough (e.g., < 1s) to guarantee that

the interference burst is not captured by the interference

detection mechanisms [32], [33], [61].

• I is the time interval between every two consecutive

interference bursts. I infers the frequency of attack bursts.

I should be short enough so that the attacker can generate

interference bursts frequent enough to cause significant

performance damage on the target system. On the other

hand, too short I makes the attack similar to traditional

flooding DDoS attacks, which can be easily detected.

Given this high-level design of MemCA, we need to tackle

two key challenges to make MemCA practical. They are

addressed in the following sections.

• How can we determine the relationship between the

attack impact and the attack parameters? Section IV-B

will use queuing network theory to model a typical n-tier

system, generalize the attack scenarios of MemCA, and

analyze the phenomenon of cross-tier queue overflow [55]

and response time amplification under MemCA.

• How can an attacker get the optimal attack parameters

without the knowledge of performance parameters of the

target n-tier system, which is a typical case in a public

cloud environment? Section IV-C will exploit feedback

control theory to dynamically adjust attack parameters for

better attack effectiveness and stealthiness, even without

knowing the performance parameters of the target sys-

tems (e.g., the service time and resource utilization).

B. MemCA Modeling
System Model and Problem Statement. Previous study [18],

[57] shows that queueing theory has been used on quantitative

1530

Fig. 5: MemCA scenario and system model.

analysis for DoS attacks in computer systems. In this section,

we start our system model with a tandem queue, which is

usually exploited to model complex computer systems such

as n-tier systems. In an n-tier system, the client requests are

offered to the first queue, the output of which are fed to the

second queue, and so on. Each tier has an arrival rate of a

Poisson process and a service rate that follows an exponential

distribution. In a Tandem Queue model, the service rate is

independent among different tiers in the system.

To realistically model the target n-tier system, we also

assume the arrival rate of each tier is a Poisson process, and

the capacity of each tier is an exponential distribution [49].

Figure 5 depicts a MemCA attack scenario and a classic 3-tier

web applications model based on our RUBBoS environment

(i.e., 1 Apache, 1 Tomcat, and 1 MySQL). The queue size

of each tier denotes the size of concurrency control resources

(e.g., server threads or connections) of each tier in the system.

For example, Figure 5 shows there are m and k threads in

Apache and Tomcat, respectively. In practice, both m and k
cannot be very large (from tens to a few hundred) because

of the well-known high multithreading overhead [55]. In our

RUBBoS experiments, MySQL CPU is the critical (bottleneck)

resource in the system. Since n-tier systems usually adopt

synchronous RPC-style request/response for inter-tier commu-

nication, a queued request in the back-end MySQL will also

cause a thread pending for response in every upstream tier

such as Tomcat and Apache. Thus, queued requests in MySQL

can easily exhaust the limited threads in upstream tiers, which

is a key insight that motivates us to design the MemCA

attacks. Table I summarizes the notation and description of

the parameters used in our model.

The purpose of MemCA attacks is to cause the long-tail

response time problem (maximize the attack impact Effect)
while keeping stealthy. To analyze percentile response time

of the target n-tier system caused by our attacks, we should

pinpoint where the major time is consumed inside the n-

tier system. Thus, we analyze the percentile response time

observed in each tier. Meanwhile, we also need to quantify the

stealthiness of our attacks. In other words, we should quantify

the period of each interference burst (millibottleneck); shorter

period of each interference burst means the attack is stealthier.

Capacity Degradation under Attack. In MemCA attacks,

the attacker can degrade the capacity of the n-th tier through

adversary programs executing in co-located VMs, blocking

Param. Description
Qi the queue size for the ith tier

Ci,OFF the capacity for the ith tier during OFF bursts
Ci,ON the capacity for the ith tier during ON bursts
λi the legitimate request rate arriving in the ith tier
D the degradation index of the capacity of the nth tier

li,UP the time to fill up the queue of the ith tier per burst
li,DOWN the time to drop down the queue of the ith tier per burst

PD the damage period of the target VM during a burst
PMB the millibottleneck period of the target VM during a burst
ρ overall percentile response time under MemCA

TABLE I: Model and system parameters

the process of requests in the n-th tier, which leads to queue

overflow propagation from the n-th tier to all the upstream

tiers. In a concrete workload environment, each host should

have a peak capacity (service rate), Rmax. Thus, during each

MemCA attack burst, we define the degradation index D as:

D =
Rmax −R

Rmax
(2)

where R is the attack intensity of each burst.

We also define Cn,ON and Cn,OFF to differentiate the

degraded capacity of the n-th tier under the attack scenario

from the normal capacity. Specifically,

Cn,ON = D ∗ Cn,OFF (3)

We note that during the ON attack periods, the MemCA

attacker quickly saturates the queues in each tier of the

system, making each tier working in a high concurrency mode.

Previous research results [10], [56] show that the capacity

of a server degrades as job concurrency increases due to

multithreading overhead. To simplify our analysis, we disre-

gard the capacity degradation caused by high concurrency; we

only count the capacity degradation caused by MemCA attack

bursts as shown in Equation 3.

Quantifying Attack Impact. To quantify the damaging im-

pact of MemCA, we divide the queueing status of the system

under attack into three stages: build-up, hold-on, and fade-off.
We analyze the period of each stage in the following.

During the build-up stage, the queue will be filled up from

the bottleneck tier to each upstream tier, until the front-most

tier. In reality, the database tier in an n-tier system is very

likely to be the bottleneck tier, which is the last-most tier. If
the queue size satisfies

(Condition 1) Q1 > Q2 > ... > Qn−1 > Qn

and the degradation index during build-up stage satisfies
(Condition 2) λn > Cn,ON

for all i=1,...,n, then the time needed to fill up the queue for
the i-th server during a burst is approximately

ln,UP =
Qn

(λn − Cn,ON)
(4)

ln−1,UP =
(Qn−1 −Qn)

(λn−1 + λn − Cn,ON)
(5)

...

l1,UP =
(Q1 −Q2)

(
∑n

i=1 λ i − Cn,ON)
(6)

Equation 4 denotes the time needed to fill up the queue

in the n-th tier, where the adversary VMs co-locate with the

1531

target VM. Condition 2 is to make sure that the MemCA attack

intensity is high enough so that the queue in the n-th tier is

able to fill up, and the queue fill-up rate is (λn−Cn,ON). Once

the n-th tier queue fills up, requests starts to queue in the (n-
1)-th tier, and so on. We derive Equation 5 and 6 based on

the characteristic of typical n-tier web systems, which usually

adopt the RPC-style synchronous communication between

consecutive tiers; one queued request in a downstream server

holds a thread in every upstream server; so the available

queue slots in the (n-1)-th tier is (Qn−1 − Qn) when the n-
th tier queue fills up. In addition, all the traffic arriving to

a downstream tier needs to go through every upstream tier,

thus the request rate for (n-1)-th tier is (λn−1 + λn). The

same reasoning process can be applied to every upstream tier

including the front-most tier as shown in Equation 6.

During the hold-on stage, the biggest performance damage

occurs because the queue in every tier is full. Two factors

contribute to the damage. First, every request encounters the

maximum queuing time in the system; second, new coming

requests from clients start to drop by the front-most tier,

leading to TCP retransmissions. Since the minimum TCP

retransmission time-out is 1 second [21], clients will observe

requests with very long response time. We call the hold-on

stage as the damage period PD caused by our MemCA attacks,

which can be calculated as follows:

PD = L−
n∑

i=1

li,UP (7)

where L is the burst length (interference period) caused by

adversary VMs, including both the build-up and hold-on stage.

To enable significant performance damage of our MemCA

attacks, PD for each attack burst should be the longer the

better. We can quantify the impact of our MemCA attack on

the target n-tier system as follows:

ρ =
PD

I
(8)

where I is the interval between every two consecutive bursts.

For example, to achieve the attacking goal that 95th percentile

response time longer than 1 second, the damage period PD

should be at least 100ms for a 2-second attacking interval.

Quantifying Attack Stealthiness. Although the damage pe-

riod caused by an attack burst is shorter than the burst length

itself (Equation 7), the millibottleneck period caused by each

attack burst is beyond the burst length. This is because even if

an attack burst stops, the system will still be busy in processing

queued requests accumulated during the build-up and hold-on

stage. We refer the post hold-on stage as the fade-off stage.

During the fade-off stage, the service rate of the n-th tier

recovers to its full capacity Cn,OFF because of removed

interference, thus the queued requests in each tier will start

to drain. Here we only consider the queue drain period in

the n-th tier because this is the tier where resource contention

occurs. The drain rate of the n-th tier queue is (Cn,OFF −λn),

thus this queue drain period can be approximated as follows:

ln,DOWN =
Qn

(Cn,OFF − λn)
(9)

0

20

40

60

80

0 0.5 1 1.5 2

Q
u
eu
ed
re
q
s
[#
]

Timeline [s]

Apache Tomcat MySQL

(a) In tandem queue, all the re-
quests are queued in last tier.

0

20

40

60

80

0 0.5 1 1.5 2

Q
u
eu
ed
re
q
s
[#
]

Timeline [s]

Apache Tomcat MySQL

(b) In our attack model, queue
overflow propagates in all tiers.

Fig. 6: Cross-tier queue overflow under MemCA (Fig-
ure 6b), comparing to tandem queue model (Figure 6a).

We note that during the queue drain period, the critical

resource (e.g., CPU) of the n-th tier will be fully utilized to

process the queued requests; thus the overall millibottleneck

period caused by an attack burst is as follows:

Pn,MB = L+ ln,DOWN (10)

To guarantee the stealthiness of our MemCA attack, we

should keep Pn,MB as short as possible, for example, within

sub-second to escape the detection of typical monitoring tools

that normally use seconds or even minutes time granularity.

Simulation Analysis. To further illustrate the proposed model

and quantify the attack impact, we adopt simulation using

Java Model Tools (JMT) [9]. JMT is an open source suite for

modeling Queuing Network computer systems. It is widely

used in the research area of performance evaluation, capacity

planning in n-tier systems. Thus, it is very suitable to evaluate

the impact of our attacks on n-tier systems. We modify the

JMT code and control the degradation index of service rate

during an attack burst to simulate our MemCA attacks. To

simplify the analysis, we fix the burst interval I and burst

length L as 2 seconds and 100 milliseconds, respectively. With

regard to the JMT simulation of a 3-tier system, we estimate

the constant parameters (λi, Ci) of each tier measured from

our real RUBBoS experiments.

Cross-Tier Queue Overflow. In Figure 6, we compare our

system model with the classic tandem queue model under the

same MemCA attack case (e.g., D = 0.1). Obviously, Figure 6b

shows the process of cross-tier queue overflow in our system

model, involving queue fill-up, hold-on, and fade-off, since

new coming requests will be queued in an upstream tier once

the queue of its consecutive downstream tier is full. On the

contrary, in the tandem queue case in Figure 6a, all the requests

are queued in the last tier.

Tail Response Time Amplification. In Figure 7, we use the

same attack parameters (e.g., D = 0.1, I = 2s, L = 100ms) to

launch our MemCA attack, compare three cases, including a

tandem queue model, our attack model with infinite Apache

queue (not drop requests), and our attack model with finite

Apache queue (can drop requests once all queues are full).

Figure 7a shows the tandem queue case with infinite MySQL

queue, percentile response time observed by all the tiers and

client nearly overlap and continuously increase due to in-

creased queueing time in MySQL. All the requests are queued

1532

0

20

40

60

80

100

120

60 65 70 75 80 85 90 95 100

R
es
p
o
n
se
T
im
e
[m
s]

X-ile [%]

Client
Apache
Tomcat
MySQL

(a) Tandem queue case with infinite MySQL
queue size. The percentile response time
observed by all tiers nearly overlap. All
requests are queued in MySQL (see Fig-
ure 6a).

0

40

80

120

160

200

60 65 70 75 80 85 90 95 100

R
es
p
o
n
se
T
im
e
[m
s]

X-ile [%]

Client
Apache
Tomcat
MySQL

(b) Our attack model case with infinite
queue in Apache but finite queue in other
tiers. Percentile response time of Apache
and clients amplifies due to cross-tier queue
overflow.

0

200

400

600

800

1000

60 65 70 75 80 85 90 95 100

R
es
p
o
n
se
T
im
e
[m
s]

X-ile [%]

Client
Apache
Tomcat
MySQL

(c) Our attack model case with finite queue
of each tier. Client perceives much longer
peak response time than that in Figure 7b
because of dropped requests and TCP re-
transmissions.

Fig. 7: Tail response time amplification under MemCA. (a) and (b) compares the tandem queue case with our model with

infinite Apache queue. And (c) shows performance of our model with finite queues (the realistic settings in n-tier systems).

in MySQL under the attack (see Figure 6a). Figure 7b shows

our attack model case with infinite Apache queue, percentile

response time observed by Apache and clients is amplified due

to cross-tier queue overflow. In practice, the Apache queue

size has to be limited due to the high concurrency overhead

as introduced previously. Figure 7c shows our attack model

case with the finite queue of each tier; in this case the clients

perceive much longer peak response time than that in Figure 7b

and Figure 7a, since requests are dropped once all the queues

in the 3-tier system are full, leading to TCP retransmission

(the minimum timeout of TCP retransmission is 1 second).

Relationship between Attack Parameters and Impact.
MemCA has two attack goals: causing high damage (e.g., 95th

percentile response time > 1s) while keeping stealthiness (e.g.,

millibottleneck length < 1s). Through equations 8 and 10,

we can calculate the damaging impact and the millibottleneck

length if we know system parameters (See Table I) and attack

parameters. On the contrary, based on the predefined attack

goals, we can also calculate attack parameters if we know

system parameters.

C. MemCA Implementation

It is difficult to accurately know the various parameters of

the target n-tier system for a MemCA attacker. However, given

the proposed model and simulation analysis, we understand the

relationship between the attack parameters and their impact

on the target system. So we exploit some advanced feedback

control tools (e.g., Kalman filter [25]) to dynamically tune

the attack parameters to fit the dynamic system state [47] and

achieve our attacking goal. We implement a control framework

which includes two components: MemCA frontend (MemCA-

FE) and MemCA backend (MemCA-BE) (Figure 8). MemCA-

FE executes the attack program in the co-located adversary

VMs and reports the shared resource consumption. MemCA-

BE consists of two components: a prober which periodically

sends lightweight HTTP requests to the target web system and

monitors the response time of the target web application, and a

commander which dynamically controls the attack parameters

of the adversary VMs based on the performance and the

resource utilization metrics of historical attack bursts.

Fig. 8: MemCA framework and a 3-tier sample topology.

Estimate Critical Resource Utilization (MemCA’s damage).
In MemCA-FE, we record the critical resource utilization

consumed by the adversary VMs through the attack program

(e.g., RAMspeed [19]). In our MemCA attack case, the critical

resource is memory bandwidth of the physical machine hosting

both the adversary VMs and the target VM. The maximum

memory bandwidth of the target machine is fixed and can be

easily profiled by running some memory intensive benchmark

in the adversary VMs.

In our attack control framework, we measure the percentile

response time of the system through the prober in MemCA-

BE. Due to the positive correlation between the system

response time and resource utilization, we tune the attack

intensity R of the adversary VMs using feedback control

technology, to control the target resource utilization. Through

adjusting the attack burst length L and the burst interval I,
we can achieve the expected attack goal (e.g., 95th percentile

response time > 1 second).

Estimate Millibottleneck Length (MemCA’s stealthiness).
We record the execution time of the attack program (e.g., the

RAMspeed benchmark) in the adversary VMs in MemCA-FE.

During the execution time of the attack program, the target

bottleneck resource is supposed to be busy and saturated.

1533

Thus, we can exploit the execution time to estimate the

millibottleneck length of the critical resource, further control

the attack parameters (e.g., burst length L) to achieve the

stealthiness goal. In practice, this approach is very conservative

because the target bottleneck resource may not always be

100% utilized during the execution time of the attack program,

thus the actual attack is stealthier than estimated using the

execution time as the millibottleneck length.

V. MEMCA EVALUATION

Here, we use the RUBBoS web application benchmark to

evaluate the damage and the stealthiness of MemCA attacks.

A. MemCA Damage in RUBBoS

Experiment Methodology. We adopt RUBBoS [42], a repre-

sentative n-tier web application benchmark modeled after the

popular news website Slashdot. We configure RUBBoS using

the typical 3-tier architecture (see the 3-tier system in Figure 8)

in the Amazon EC2 platform, each tier is deployed in an EC2

c3.large instance hosted by a dedicated node (equipped with

two ten-core Intel Xeon CPU E5-2680 and 64GB of main

memory). Each instance has two vCPUs and runs Red Hat

7.3.1. We configure 3500 concurrent legitimate users using

the default RUBBoS workload generator to interact with the

target benchmark website. Each user follows a Markov chain

model to navigate among different web pages, with averagely

7-second think time between every two consecutive requests.

Since recent works [23], [53], [58] already provide solutions to

co-locate VMs with a victim in Amazon EC2, the co-location

step is orthogonal to our research. We co-locate VMs on a

dedicated EC2 node to perform our experiments.

The adversary VMs are co-located with the MySQL VM

of the target 3-tier benchmark website. As for the attack

parameters, we fix the burst interval I to be 2 seconds and

the burst length L to be 500 milliseconds, with the goal

of making the average utilization of the critical resource to

be moderate, thus bypassing the state-of-the-art detection of

performance interference. Given the knowledge in Section III,

we saturate the memory bandwidth of the target host through

triggering memory lock during each attack burst, which is

more effective than saturating the memory bus. Our attack

damage goal is to cause the 95th percentile response time of

the target benchmark website > 1 second.

Results. We have conducted 3-minute RUBBoS experiments

under MemCA attacks launched by our control framework.

Figure 2(a) shows the corresponding percentile response time

observed from each tier, suggesting that our attack achieved

the damage goal. Figure 9 captures a representative 8-second

snapshot with each metric monitored using fine-grained (50

ms) monitoring tools. This figure illustrates how MemCA

attack bursts can cause long response time. Figure 9a shows

a MemCA attack burst occurs in every 2 seconds. Each burst

(launched by the attacking program) lasts for about 500ms,

triggering memory lock in order to degrade available memory

bandwidth of the host. The attack bursts in the adversary VM

cause transient CPU saturations of the co-located MySQL

 0

 20

 40

 60

 80

 100

A
tt

a
c
k

 V
o

lu
m

e
 [

%
]

52 53 54 55 56 57 58 59 60

 Timeline [s]
(a) 4 attack bursts with 2 seconds interval launched in the
co-located adversary VM. Each burst lasts for about 500ms,
triggering memory lock by adversary program run in an attack
VM to degrade available memory bandwidth in the host.

 0

 20

 40

 60

 80

 100

C
P

U
 U

s
a
g
e
 [

%
] Apache Tomcat MySQL

52 53 54 55 56 57 58 59 60

Timeline [s]
(b) Transient CPU saturations of the target MySQL VM casued
by the attack bursts in the co-located attack VM.

 0

 40

 80

 120

 160

 200

Apache
queue limit

Q
u

e
u

e
d

 r
e
q

s
 [

#
] Apache Tomcat MySQL

52 53 54 55 56 57 58 59 60

Timeline [s]
(c) Quick queue propagation in 3 tiers during each burst.

 0

 5

 10

 15

 20

 25

L
o
n

g
 R

e
q

u
e
s
ts

 [
#
]

52 53 54 55 56 57 58 59 60

 Timeline [s]
(d) Very long response time (e.g., > 1 second) perceived by the
end users due to MemCA bursts.

Fig. 9: MemCA Damage in RUBBoS.

VM in Figure 9b. Each transient CPU saturation creates a

millibottleneck (less than 1 second) and causes requests to

queue in MySQL; MySQL local queue soon fills up during

the millibottleneck period, pushing requests to queue in the

upstream Tomcat and Apache as shown in Figure 9c. Once

the queued requests in the front-most Apache exceed its

queue limit, new requests from legitimate users are dropped,

resulting in TCP retransmissions. The minimum timeout of

TCP retransmission [21] is 1 second. Thus, end users perceive

very long response time as we observed in Figure 9d.

1534

B. MemCA Stealthiness under Cloud Elasticity and Cloud
Detection of Performance Interference

Evaluate MemCA under Cloud Elasticity. Amazon AWS

provides Elastic Load Balancing in its EC2 platform to

guarantee scalability, performance, and security for deployed

applications [5]. It can elastically scale to fit the application

demand because of the ability to trigger Auto Scaling [3] in the

available Amazon EC2 instance fleet. The trigger mechanism

of Auto Scaling is based on a coarse-grained monitoring tool,

Amazon CloudWatch [1], whose sampling period is 1 minute.

For example, an application can scale out more instances once

the average CPU utilization of any instance of the system

exceeds a preconfigured threshold (e.g., 85%) during a 1-

minute sampling period. Thus, to validate whether Cloud

Elasticity can mitigate our attack, we need to verify whether

our attack can trigger the threshold of Auto Scaling. Here,

in our experiments, we assume the preconfigured threshold

of scaling out more instances is 85% of the average CPU

utilization, which is usually a feasible and simple solution for

system administrators [11], [43].

Results. Figure 10 shows the CPU utilization of the bottle-

neck tier MySQL in the previous 3-minute MemCA attacks

experiments using different sampling granularity. Figure 10a,

10b, and 10c adopt 1-minute, 1-second, and 50-millisecond

monitoring granularity, respectively. The average utilization

in the 1-minute case is flat and moderate, which obviously

will not trigger the condition of Auto Scaling. Using 1-second

monitoring, the CPU utilization exhibits a little bit fluctuation,

which will also fail to trigger Auto Scaling. Only using

more fine-grained granularity 50 milliseconds, we can observe

transient CPU saturations. These transient CPU saturations

will also not trigger Auto Scaling due to the coarse monitoring

granularity of CloudWatch.

There are two reasons why AWS Auto Scaling relies on

coarse granularity monitoring provided by CloudWatch. First,

the coarse granularity can significantly reduce monitoring

overhead, especially if we consider there are tens of thousands

of machines in a typical datacenter; each machine may also

have hundreds of system metrics to monitor. Second, Auto

Scaling wants to avoid over-sensitive to system state changes

(e.g., CPU utilization fluctuation) in order to keep the sta-

bility of the target system. However, such coarse granularity

monitoring provides a perfect opportunity for our MemCA

attacks, which allows the MemCA attacks to effectively bypass

the state-of-the-art cloud elasticity mechanisms as shown in

Figure 10a and 10b.

Evaluate MemCA under Cloud Detection of Performance
Interference. The detection of performance interference inside

the cloud typically requires monitoring low-level metrics such

as cache misses and I/O counts, which cannot be measured

inside the customers’ VMs. Thus, most detection approaches

of performance interference are based on the low-level moni-

toring tools such as Xentrace [34] and OProfile [51] deployed

in the host level. Since Amazon EC2 does not allow host level

monitoring for normal users, we repeat our above experiments

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180C
P

U
 U

s
a
g
e
 [

%
]

Timeline [s]

1min sampling interval

(a) Using 1-minute monitoring, observing flat CPU usage.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180C
P

U
 U

s
a

g
e
 [

%
]

Timeline [s]

1s sampling interval

(b) Using 1-second monitoring, showing a little bit fluctuation.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180C
P

U
 U

s
a

g
e
 [

%
]

Timeline [s]

50ms sampling interval

(c) Using 50-millisecond monitoring, observing frequent and
transient saturations of CPU uitilization.

Fig. 10: MemCA Stealthiness under Cloud Elasticity.

in our private cloud. The setup of our private cloud is intro-

duced in Section III. Figure 2b shows that we are able to

achieve similar attack impact in our private cloud as that in

the public Amazon EC2 (Figure 2a). Here, we use OProfile

to measure LLC cache misses, since we try to intermittently

degrade the memory bandwidth or saturate the shared memory

bus of the host, and LLC cache misses is the most relevant

low level metric with our attacks.

Results. Figure 11 shows LLC cache misses of the physical

machine hosting MySQL and its co-located VMs (Host3 in

Figure 8) using two memory attack approaches (i.e., saturating

memory bus and triggering memory lock) as described in

Section III. Due to the on-off pulsating attack styles of

MemCA, we can observe periodic LLC misses in the MySQL

VM in Figure 11a, which is caused by intermittently saturating

the memory bus in the co-located adversary VMs. However,

when we adopt the approach of triggering memory lock for

launching MemCA, we are not able to observe any obvious

pattern of LLC misses in the MySQL VM as shown in

Figure 11b, even though the attacker creates periodic attack

bursts as shown in Figure 9a.

The above results also reveal the complexity of an effective

detection approach. On the one hand, monitoring the wrong

metrics will not give us any useful information. On the other

1535

 0
 1e+06
 2e+06
 3e+06
 4e+06

 0 20 40 60 80 100 120 140 160 180

 L
L

C
 M

is
s
 [

#
]

Timeline [s]

1s sampling interval

(a) Periodic LLC misses in MySQL VM due to attack bursts of
saturating memory bus in co-located VMs.

 0

 250000

 500000

 0 20 40 60 80 100 120 140 160 180

 L
L

C
 M

is
s
 [

#
]

Timeline [s]

1s sampling interval

(b) No obvious pattern of LLC misses in MySQL VM under
periodic bursts of triggering memory lock in co-located VMs.

Fig. 11: MemCA Stealthiness under Cloud Detection of
Performance Interference.

hand, it is very challenging to pinpoint the right metrics to

monitor considering there are only a few hardware perfor-

mance counters supported by modern CPUs (e.g., Our Xeon

E5-2603 CPU only support 4) while the candidate events can

reach to hundreds. In addition, using different monitoring gran-

ularity to sample the chosen metrics affects the detection effec-

tiveness significantly; for example, in the case of LLC cache

miss monitoring, we get similar results as we have observed

in Figure 10: coarse granularity monitoring significantly blurs

the metric variation while fine-grained monitoring may cause

non-trivial overhead that current cloud platforms want to avoid

in the first place (e.g., Amazon CloudWatch [1]). Overall, de-

signing effective detection/defense mechanisms again MemCA

attacks in the cloud requires significant future research.

VI. RELATED WORK

In this section, we review the most relevant work with

regard to memory performance attacks and its corresponding

solutions in today’s cloud platforms.

Memory Performance Attacks. Memory is one of the key

computer resources that is frequently exploited by attackers

to degrade the performance of the target system. For exam-

ple, Moscibroda et al. [40] study the memory performance

attacks in multi-core systems where an adversary program

can maliciously degrade the memory-related performance of

another application running on the same socket. Zhang et

al. [60] exploit two types of memory contentions, storage-

based contention (LLC cleansing attack) and scheduling-based

contention (exotic atomic locking attack), to degrade the

performance of applications deployed in clouds. Mehmet et

al. [22] attack memory bus/bandwidth, focusing on mobile

devices launched by an attack App. Compared to previous

brute-force memory attacks, we investigate transient MemCA-

based cross-resource attacks (e.g., the tangible damage is on

CPU while the attack is on memory). In addition, our attacks

focus on n-tier systems, in which the complex dependencies

among the distributed nodes make the attacks stealthy while

the performance damage is severe, due to the tail response

time amplification.

Cross-Resource Contention. Mitigating resource contention

in the cloud has been widely investigated [41], [61]. Cross-

resource contention (e.g., the relationship between memory

bandwidth and CPU in MemCA) is a more difficult problem

than the traditional single-resource contention. On the solution

side, Heracles [31] exploit multiple resource isolation schemes

to avoid/reduce shared resource contention while satisfying

their latency critical workloads. Their solution, however, may

fail in general cases due to a large variety of resource

contentions, especially the cross-resource contentions. Finally,

after continuous efforts to achieve high utilization, low inter-

ference, and fast response time in cloud data centers, engineers

in Google admit that it is almost impossible to achieve all the

three at the same time [50]. Our MemCA attacks also comply

with such an observation: by imposing transient resource

interferences, MemCA attacks are likely to degrade the target

system performance, especially the response time.

VII. CONCLUSION

In this paper, we described MemCA attacks, a new type

of low-volume internal DoS attacks in the cloud. Such attacks

exploit the sharing nature of public cloud computing platforms

by co-locating one or a few adversary VMs with the target

VMs that deploy response time sensitive web applications.

We showed that MemCA is able to cause intermittent and

short-lived cross-resource contentions that lead to performance

uncertainty of the target web application (Section II-C). We

modeled the attack scenario in n-tier systems based on queuing

network theory and analyzed cross-tier queue overflow and

response time amplification under MemCA (Section IV-B).

To validate the practicality of our attacks, we evaluated our

attacks through extensive benchmark experiments in both

private cloud and the public Amazon EC2 (Section V), and

confirmed the significant damage and the high stealthiness of

our attacks. In general, MemCA attacks make an important

contribution towards understanding the emerging low-footprint

and stealthy DoS attacks in the cloud era.

ACKNOWLEDGMENT

This research has been partially funded by National Sci-

ence Foundation by CISE’s CNS-1566443, CNS-1566388,

CNS-1717898, Louisiana Board of Regents under grant

LEQSF(2015-18)-RD-A-11, and gifts or grants from Fujitsu.

Any opinions, findings, and conclusions are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation or other funding agencies and

companies mentioned above.

1536

REFERENCES

[1] Amazon CloudWatch Concepts. ” http://docs.aws.amazon.com/Amazon
CloudWatch/latest/monitoring/cloudwatch concepts.html”.

[2] Spotify Moves to Google Cloud Platform. ”https://www.infoq.com/ne
ws/2016/02/Spotify-Google-Cloud”, 2016.

[3] Amazon. Amazon Auto Scaling. ” https://aws.amazon.com/documentati
on/autoscaling”, 2017.

[4] Amazon. Amazon EC2 Instance Types. ” https://aws.amazon.com/ec2/
instance-types/”, 2017.

[5] Amazone. AWS Elastic Load Balancing. ”https://aws.amazon.com/ela
sticloadbalancing/”, 2017.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, et al. Above the
clouds: A berkeley view of cloud computing. In Tech. Rep. UCB/EECS-
2009-28, University of California, Berkeley, 2009.

[7] A. Bakshi and Y. B. Dujodwala. Securing cloud from ddos attacks
using intrusion detection system in virtual machine. In Proceedings
of Second International Conference on Communication Software and
Networks (ICCSN’10), pages 260–264. IEEE, 2010.

[8] H. S. Bedi and S. Shiva. Securing cloud infrastructure against co-
resident dos attacks using game theoretic defense mechanisms. In
Proceedings of the International Conference on Advances in Computing,
Communications and Informatics, pages 463–469. ACM, 2012.

[9] M. Bertoli, G. Casale, and G. Serazzri. Java modelling tools: an open
source suite for queueing network modelling andworkload analysis. In
QEST 2006, pages 119–120, 2006.

[10] H. Chen, Q. Wang, B. Palanisamy, and P. Xiong. Dcm: Dynamic
concurrency management for scaling n-tier applications in cloud. In
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pages 2097–2104. IEEE, 2017.

[11] Clavister. Clavister DoS and DDos Protection. ”Clavister, Inc.”, 2014.

[12] K. Curtis, P. Bodı́k, M. Armbrust, A. Fox, M. Franklin, M. Jordan, and
D. Patterson. Determining SLO Violations at Compile Time. 2010.

[13] M. Darwish, A. Ouda, and L. F. Capretz. Cloud-based ddos attacks
and defenses. In Proceedings of 2013 International Conference on
Information Society (i-Society), pages 67–71. IEEE, 2013.

[14] C. Delimitrou and C. Kozyrakis. Bolt: I know what you did last sum-
mer... in the cloud. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 599–613. ACM, 2017.

[15] I. Engineering. Open-sourcing a 10x reduction in apache cassandra tail
latency. https://instagram-engineering.com/open-sourcing-a-10x-reduc
tion-in-apache-cassandra-tail-latency-d64f86b43589, March 2018.

[16] L. Engineering. Who moved my 99th percentile latency?
https://engineering.linkedin.com/performance/who-moved-my-99th-per

centile-latency, April 2018.

[17] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam. Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines. In Proceedings of the 2nd ACM Symposium on Cloud
Computing, page 22. ACM, 2011.

[18] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang. Reduction of quality
(roq) attacks on internet end-systems. In Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.,
volume 2, pages 1362–1372. IEEE, 2005.

[19] R. M. Hollander and P. V. Bolotoff. RAMspeed, a cache and memory
benchmarking tool. ” http://alasir.com/software/ramspeed”, 2002.

[20] Q. Huang and P. P. Lee. An experimental study of cascading perfor-
mance interference in a virtualized environment. ACM SIGMETRICS
Performance Evaluation Review, 40(4):43–52, 2013.

[21] IETF. RFC 6298. ” https://tools.ietf.org/search/rfc6298/”.

[22] M. S. Inci, T. Eisenbarth, and B. Sunar. Hit by the bus: Qos degradation
attack on android. In Asia CCS 2017, pages 716–727.

[23] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar.
Cache attacks enable bulk key recovery on the cloud. In International
Conference on Cryptographic Hardware and Embedded Systems, pages
368–388. Springer, 2016.

[24] S. A. Javadi and A. Gandhi. Dial: Reducing tail latencies for cloud
applications via dynamic interference-aware load balancing. In Proceed-
ings of 2017 IEEE International Conference on Autonomic Computing
(ICAC), pages 135–144. IEEE, 2017.

[25] R. E. Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

[26] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. Measuring
interference between live datacenter applications. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 51. IEEE Computer Society Press, 2012.

[27] R. Kohavi and R. Longbotham. Online experiments: Lessons learned.
IEEE Computer Society, 2007.

[28] KVM. Kernel Virtual Machine. ” https://www.linux-kvm.org/page/Ma
in Page”.

[29] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Computer meteorology:
Monitoring compute clouds. In HotOS, 2009.

[30] H. Liu. A new form of dos attack in a cloud and its avoidance
mechanism. In Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, pages 65–76. ACM, 2010.

[31] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: improving resource efficiency at scale. In ACM SIGARCH
Computer Architecture News, volume 43, pages 450–462. ACM, 2015.

[32] A. K. Maji, S. Mitra, and S. Bagchi. Ice: An integrated configuration
engine for interference mitigation in cloud services. In Proceedings of
2015 IEEE International Conference on Autonomic Computing (ICAC),
pages 91–100. IEEE, 2015.

[33] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma. Mitigat-
ing interference in cloud services by middleware reconfiguration. In
Proceedings of the 15th International Middleware Conference, pages
277–288. ACM, 2014.

[34] L. man page. xentrace(8). ”https://linux.die.net/man/8/xentrace”, 2017.

[35] G. Mantas, N. Stakhanova, H. Gonzalez, H. H. Jazi, and A. A.
Ghorbani. Application-layer denial of service attacks: taxonomy and
survey. International Journal of Information and Computer Security,
7(2-4):216–239, 2015.

[36] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture, pages 248–259. ACM, 2011.

[37] Microsoft. Microsoft azure. https://azure.microsoft.com/en-us/?v=17.
14, 2017.

[38] Microsoft. Microsoft Azure Virtual Machine Sizes for Cloud Services.
” https://docs.microsoft.com/en-us/azure/virtual-machines/windows/size
s-general”, 2018.

[39] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[40] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of
memory service in multi-core systems. In USENIX Security 2007.

[41] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini.
Deepdive: Transparently identifying and managing performance interfer-
ence in virtualized environments. In Proceedings of the 2013 USENIX
Annual Technical Conference, number EPFL-CONF-185984, 2013.

[42] OW2. Rubbos. http://jmob.ow2.org/rubbos.html, 2017.

[43] I. Palo Alto Networks. Application DDoS Mitigation. ”
https://live.paloaltonetworks.com/t5/Tech-Note-Articles/Applicatio
n-DDoS-Mitigation/ta-p/54531”, 2014.

[44] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 199–212. ACM, 2009.

[45] SECURELIST. DDoS attacks in Q2 2018. ”https://securelist.com/ddo
s-report-in-q2-2018/86537/”, 2018.

[46] H. Shan, Y. Chen, H. Liu, Y. Zhang, x. Xiao, X. He, M. Li, and W. Ding.
ε-diagnosis: Unsupervised and real-time diagnosis of smallwindow long-
tail latency in large-scale microservice platforms. In Proceeding of the
Web Couference-30 years of then web (WWW’19), 5 2019.

[47] H. Shan, Q. Wang, and C. Pu. Tail attacks on web applications. In
Proceedings of the 24nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017.

[48] H. Shan, Q. Wang, and Q. Yan. Very short intermittent ddos attacks in an
unsaturated system. In Proceedings of the 13th International Conference
on Security and Privacy in Communication Systems. Springer, 2017.

[49] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris. Fundamentals
of queueing theory, volume 399. John Wiley & Sons, 2018.

[50] D. Sites. Data Center Computers: Modern challenges in CPU design.
”https://www.cs.wisc.edu/events/1887”, 2017.

[51] O. team. Oprofile. ”http://oprofile.sourceforge.net/”, 2017.

1537

[52] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift.
Resource-freeing attacks: improve your cloud performance (at your
neighbor’s expense). In CCS 2012, pages 281–292.

[53] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M. Swift. A placement
vulnerability study in multi-tenant public clouds. In Proceedings of the
24th USENIX Security Symposium, pages 913–928, 2015.

[54] T. Vissers, T. Van Goethem, W. Joosen, and N. Nikiforakis. Maneu-
vering around clouds: Bypassing cloud-based security providers. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1530–1541. ACM, 2015.

[55] Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang, and C. Pu. A study of
long-tail latency in n-tier systems: Rpc vs. asynchronous invocations. In
ICDCS 2017.

[56] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong, C. Pu,
M. Kawaba, and L. Harada. The impact of soft resource allocation
on n-tier application scalability. In Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International, pages 1034–1045. IEEE,
2011.

[57] Y. Wang, C. Lin, Q.-L. Li, and Y. Fang. A queueing analysis for
the denial of service (dos) attacks in computer networks. Computer
Networks, 51(12):3564–3573, 2007.

[58] Z. Xu, H. Wang, and Z. Wu. A measurement study on co-residence
threat inside the cloud. In USENIX Security, pages 929–944, 2015.

[59] S. T. Zargar, J. Joshi, and D. Tipper. A survey of defense mechanisms
against distributed denial of service (ddos) flooding attacks. IEEE
communications surveys and tutorials, 15(4):2046–2069, 2013.

[60] T. Zhang, Y. Zhang, and R. B. Lee. Dos attacks on your memory in
cloud. In ASIA CCS 2017, 2017.

[61] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes.
Cpi 2: Cpu performance isolation for shared compute clusters. In
EuroSys 2013, pages 379–391.

[62] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram. Scheduler vulnerabil-
ities and coordinated attacks in cloud computing. Journal of Computer
Security, 21(4):533–559, 2013.

1538

