
36

Mitigating Tail Response Time of n-Tier Applications:

The Impact of Asynchronous Invocations

QINGYANG WANG and SHUNGENG ZHANG, Louisiana State University–Baton Rouge, USA

YASUHIKO KANEMASA, Fujitsu Laboratories Ltd., Japan

CALTON PU, Georgia Institute of Technology, USA

Consistent low response time is essential for e-commerce due to intense competitive pressure. However, prac-

titioners of web applications have often encountered the long-tail response time problem in cloud data centers

as the system utilization reaches moderate levels (e.g., 50%). Our fine-grained measurements of an open

source n-tier benchmark application (RUBBoS) show such long response times are often caused by Cross-tier

Queue Overflow (CTQO). Our experiments reveal the CTQO is primarily created by the synchronous nature

of RPC-style call/response inter-tier communications, which create strong inter-tier dependencies due to the

request processing chain of classic n-tier applications composed of synchronous RPC/thread-based servers.

We remove gradually the dependencies in n-tier applications by replacing the classic synchronous servers

(e.g., Apache, Tomcat, and MySQL) with their corresponding event-driven asynchronous version (e.g., Nginx,

XTomcat, and XMySQL) one-by-one. Our measurements with two application scenarios (virtual machine

co-location and background monitoring interference) show that replacing a subset of asynchronous servers

will shift the CTQO, without significant improvements in long-tail response time. Only when all the servers

become asynchronous the CTQO is resolved. In synchronous n-tier applications, long-tail response times

resulting from CTQO arise at utilization as low as 43%. On the other hand, the completely asynchronous

n-tier system can disrupt CTQO and remove the long tail latency at utilization as high as 83%.

CCS Concepts: • General and reference → Performance; Measurement; Experimentation; Design; • In-

formation systems → E-commerce infrastructure;

Additional Key Words and Phrases: n-tier systems, asynchronous, performance, scalability, cloud computing

ACM Reference format:

Qingyang Wang, Shungeng Zhang, Yasuhiko Kanemasa, and Calton Pu. 2019. Mitigating Tail Response Time

of n-Tier Applications: The Impact of Asynchronous Invocations. ACM Trans. Internet Technol. 19, 3, Article

36 (July 2019), 25 pages.

https://doi.org/10.1145/3340462

This research has been partially funded by National Science Foundation by CISE’s CNS (Grants No. 1566443 and No.

1421561), SAVI/RCN (Grants No. 1402266 and No. 1550379), CRISP (Grant No. 1541074), SaTC (Grant No. 1564097) programs,

an REU supplement (Grant No. 1545173), Louisiana Board of Regents under Grant No. LEQSF (2015-18)-RD-A-11, and gifts,

grants, or contracts from Fujitsu, HP, Intel, and Georgia Tech Foundation through the John P. Imlay, Jr. Chair endowment.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation or other funding agencies and companies mentioned above.

Authors’ addresses: Q. Wang and S. Zhang, School of Electrical Engineering and Computer Science, Louisiana State Univer-

sity, Baton Rouge, 3325 Patrick F. Taylor Hall, LA 70803, USA; emails: {qwang26, szhan45}@lsu.edu; Y. Kanemasa, Fujitsu

Laboratories LTD., 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588, Japan; email: kanemasa@jp.fujitsu.com;

C. Pu, College of Computing, Georgia Institute of Technology, 266 Ferst Dr, Atlanta, GA 30332-0765, USA; email: calton@

cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/07-ART36 $15.00

https://doi.org/10.1145/3340462

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://doi.org/10.1145/3340462
mailto:permissions@acm.org
https://doi.org/10.1145/3340462

36:2 Q. Wang et al.

1 INTRODUCTION

Long-tail response time problem occurs when a large portion of normal requests finishing within
milliseconds co-exists with a small percentage of requests with very long response time (VLRT).
Long-tail response time is a big concern for e-commerce: an Amazon study [25] reported that
every increase of 100ms in page loading time is positively correlated with 1% decrease in sales.
Nevertheless, long-tail response time is a persistent challenge: practitioners in recent years con-
tinuously report their real-world problems [12, 13, 24, 27, 29, 61], despite its long history. Long-tail
response time is a non-trivial puzzle: VLRT requests usually start to appear at moderate average
system utilization (e.g., 50%). Long-tail response time can also be an elusive target: Executing the
VLRT requests by themselves would only take milliseconds.

In this article, we study an important class of long-tail response time problems in n-tier systems,
specifically, VLRT requests caused by dropped packets because of complex cross-tier interactions
among classic servers that communicate through Remote Procedure Calls (RPC). Our focus on
distributed system phenomena complements previous research on single servers [14, 41, 51, 52, 59].
We further restrict our focus to VLRT requests at moderate utilization levels, which distinguishes
our study from long-tail response time due to skewed workloads [22]. Our study supports Mogul’s
argument [36] that the performance of a distributed system can be much more complicated than
the behavior of a single server because of the complex dependencies among components.

A fine-grained timeline analysis shows that the following sequence of events occur when VLRT
requests appear due to dropped packets at moderate average system utilization. (1) The episode
of resource millibottlenecks, which lasts for a very short lifespan, for example, CPU saturated for
tens to hundreds of milliseconds due to transient events such as interference of co-located VMs.
(2) Millibottleneck slows down or stops the server processing temporarily, triggering a process
called Cross-tier Queue Overflow (CTQO) up and/or down the n-tier pipeline. (3) When a server’s
waiting requests grow beyond its maximum system queue capacity (e.g., worker thread pool is ex-
hausted and the TCP buffer overflows), further incoming packets are dropped. (4) VLRT requests
appear, because the dropped packets take several seconds to retransmit. This relatively long se-
quence of dependencies and events reveal the non-trivial nature of this class of VLRT requests.
Furthermore, the VLRT requests are no longer so elusive, since now they can be reliably repro-
duced and analyzed by our fine-grained timeline analysis.

The first contribution of this article is the characterization of the VLRT requests caused by
CTQO, which is a significant distributed system phenomenon with a large performance impact.
Specifically, CTQO consists of two non-trivial components. The first component is the millibottle-
necks that initiate CTQO. Our previous research [42, 56, 57] has reported millibottlenecks caused
by Java garbage collection (Java GC), CPU dynamic voltage and frequency scaling (DVFS), and
memory thrashing. These varied root causes of millibottlenecks make the solution to the problem
more difficult and unlikely to be done systematically. In this article, we show two more case studies
of millibottlenecks caused by interference of VM co-location and server log flushing. The second
component is the cross-tier dependencies resulting from the synchronous RPC-style call/response
communication between nodes. Such dependencies make a transient queuing effect to be propa-
gated and amplified between different servers, leading to potential queue overflow and long re-
sponse time requests. This makes us rethink the adoption of RPC-style synchronous invocations,
despite its syntactic simplicity, in complex distributed systems such as e-commerce when the tail
latency becomes a significant concern.

The second contribution is a systematic experimental evaluation of event-driven asynchronous
servers in mitigating or preventing CTQO, originally created by the strong dependencies from the
RPC-style servers in n-tier systems. Concretely, we replace the RPC-style synchronous servers
in a three-tier web system with their asynchronous counterparts one by one. For example, the

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:3

original thread-based Apache web server and Tomcat application server are replaced with the
event-based Nginx and XTomcat, respectively. The thread-based MySQL is also replaced with a
simulated event-based asynchronous MySQL by turning on a lightweight queue feature supported
by the MySQL InnoDB storage engine. Our experimental results show that replacing either an
upstream or a downstream synchronous server can only partially remove the CTQO problem. On
the other hand, at the moderate to high utilization levels, the CTQO problem and the associated
VLRT requests are effectively resolved only if all the thread-based servers are replaced with their
asynchronous version.

The rest of the article is organized as follows. Section 2 shows the class of long-tail response
time problems resulting from dropped packets. Section 3 experimentally illustrates the sequence of
causal events that start from millibottlenecks and end in dropped packets due to CTQO. Section 4
describes the methodical evaluation of a three-tier system by replacing each component server
with its asynchronous version. Section 5 summarizes the related work and Section 6 concludes the
article.

2 LONG-TAIL RESPONSE TIME DUE TO DROPPED PACKETS

The long-tail response time problem in n-tier web-facing applications has received increasing at-
tention from practitioners and researchers in recent years [12, 24, 29, 61]. It is an interesting and
challenging problem, because it consists of the co-existence of a majority of very fast responses
(order of milliseconds) with a small number (but non-negligible) of very long response time (VLRT)
requests that typically lasts several seconds. There are several known causes of VLRT requests, in-
cluding skewed work requirements and dropped packets. In the class of long-tail response time
problems due to skewed work requirements [22], some requests are significantly heavier (e.g., re-
quests with more complicated business logic) than others and the long-tail response time is caused
by such heavy requests. Such a class of long-tail response time problems is outside the scope of this
article, since it saturates a server (higher than moderate utilization) and requires the (re)allocation
of additional resources. As a concrete example, web search queries have simple syntax and seman-
tics, but the queries with popular terms have several orders of magnitude more matches; without
significant additional resources, such queries may become VLRT requests.

Instead of skewed work requirements, we focus on the class of VLRT requests resulting from
dropped packets at moderate system utilization. Such class of VLRT requests are challenging and
interesting because of two apparently contradictory factors. First, the VLRT requests in this class
are not intrinsic long requests; they only take milliseconds to execute when run by themselves.
So this class of VLRT requests are caused by either waiting or queuing somewhere in the system.
Second, this class of VLRT requests appear when the system is at moderate average system utiliza-
tion levels (e.g., 50%), so queuing is usually considered mild and would not cause VLRT requests
based on the classic queuing models.

Our experimental results show that VLRT requests caused by dropped packets help form a long-
tail multi-modal response time distribution. For example, Figure 1 shows the response time distri-
bution of a three-tier benchmark web application at three different workload levels. The detailed
experimental setup is in Appendix A. This figure shows that most requests finish within a few
hundreds of milliseconds, however, a few clusters of long requests start at 3, 6, and 9s, illustrating
the tail latency of the target benchmark application. Our previous results [56, 57] have shown that
these long requests clusters at certain response times are due to the TCP retransmission mecha-
nism for the dropped TCP packets (the minimum TCP retransmission time-out is 1s [43]).

Figure 1 also shows that VLRT requests appear at the system resource utilization as low as 43%.
So it is clear that those VLRT requests are not caused by persistent resource bottlenecks. As the av-
erage system utilization continues to increase, the VLRT requests occur more frequently as shown

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:4 Q. Wang et al.

Fig. 1. System response time distribution (semi-log graph) as system workload increases. The long-tail re-

sponse time problem appears far before the system saturation.

Fig. 2. Illustration of cross-tier dependency model under millibottlenecks. A millibottleneck occurs (step

ctd0) in Server1 and makes Server1 queue full (step ctd1), results in queue overflow towards upstream until

Servern (step ctdn), eventually leading to drops of requests in Servern and VLRT requests.

in Figures 1(b) and 1(c). In fact, the percentage of VLRT requests over the total number of finished
requests already exceeds 5%, which is considered as a severe violation of the Service Level Agree-
ments (SLAs) by most e-commerce websites [19, 25, 31]. In the next section, we will study two cases
illustrating that millibottlenecks are linked to the dropped packets and the resulting VLRT requests.
Concretely, a millibottleneck will initiate Cross-tier Queue Overflow (CTQO), a sequence of causal
events that will lead to VLRT requests because of dropped packets and TCP retransmissions.

3 CROSS-TIER QUEUE OVERFLOW BY MILLIBOTTLENECKS

3.1 Cross-tier Dependency Model

We start our discussion by defining a cross-tier dependency model that starts from millibottle-
necks, but independent of specific causes of millibottlenecks. This is important, because several
very distinct causes of millibottlenecks have been found, including system software (e.g., JVM
garbage collector [47], at architecture level (e.g., Dynamic Voltage and Frequency Scaling in anti-
synchrony with a bursty workload [56]), and two other classes of millibottlenecks described in the
following sections: CPU millibottlenecks due to VM consolidation, and I/O millibottlenecks due to
log flushing. Despite the variety of the causes, the sequence of events that follow millibottlenecks
is the same. We call such a sequence a Cross-tier Dependency Sequence, because its components
are tied together by strong dependencies between the synchronous servers due to their RPC-style
request-response communications.

A Cross-tier Dependency Sequence (denoted by steps ctd0, . . . , ctdn in an n-tier system) starts
from a millibottleneck over some concrete resource (e.g., CPU or I/O) in Server1, as shown in
Figure 2. (The millibottleneck is called step ctd0 in recognition of its originating role, but it
continues through the entire sequence, overlapping with the remaining steps ctd1 through ctdn .)
The resource saturation in ctd0 causes Server1’s threads to queue up (step ctd1), waiting for the

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:5

Fig. 3. A simple upstream CTQO illustration between Apache and Tomcat. A millibottleneck occurs in Tom-

cat at t1. Tomcat queue fills up at t2. Then all types of requests are pushed back to queue in the upstream

Apache at t3, causing queue amplification and overflow in Apache.

bottlenecked resource. In typical web-facing applications, the queues that store the waiting
requests consist of Server1’s thread pool (size determined by its configuration parameter, e.g., 150)
and TCP buffer (default size of 128). We denoted MaxSysQDepth as the total number of requests that
can be queued in all those queues. During a millibottleneck, quick arrival of jobs (typically on the
order of several thousand per second in web-facing applications with a response time of a few mil-
liseconds) can exceed MaxSysQDepth(Server1). This “filling up” of all the local request-handling
queues up to MaxSysQDepth(Server1) forms the step ctd1 of Cross-tier Dependency Sequence.

Step ctd1 ends when the number of queued requests exceeds MaxSysQDepth(Server1) and
Server1 becomes unable to accept new requests from the upstream Server2. In a classic RPC-style
implementation, Server2 blocks and occupies a thread for each pending request. The “filling up”
of the queues in Server2 forms the step ctd2. As the millibottleneck progresses, Server2 fills up
its queues (ctd2) and the next-in-line upstream Server3 starts to see its threads becoming blocked
(step ctd3). The process continues upstream (to step ctdn) until one of the Serveri (where 1 ≤ i ≤ n,
but often i = n) starts to drop packets, resulting in VLRT requests. We note tens of thousands or
even more requests may be processed per second in a large size of system. Our model still applies
to such large systems as long as each server adopts synchronous/blocking RPC for inter-server
communication. Concretely, once a server experiences a millibottleneck, requests are pushed back
to queue in the upstream servers along the chain of dependencies, causing queue amplification
and overflow.

This process of a growing Cross-tier Dependency Sequence toward upstream, eventually leading
to VLRT requests is called upstream CTQO (Cross-tier Queue Overflow). Figure 5(b) shows that the
Apache queues (Server2 in ctd2) grow much longer than those in Tomcat (Server1 in ctd1). This
is due to upstream CTQO shown in Figure 3. At time t1, Tomcat millibottleneck starts (ctd0). At
t2, hundreds of requests arrive at Tomcat (ctd1) and reach MaxSysQDepth(Tomcat), starting the
ctd2 in Apache. At t3, both the dynamic and static requests (e.g., images) start to queue up in
Apache (ctd2), which can grow significantly longer than Tomcat. This is shown in Figure 6(a), by
the categorization of queued requests in SysSteady-Apache during the same 20s timeframe as in
Figure 5(b).

To illustrate the Cross-tier Dependence Sequence in upstream CTQO, our experiments use a nor-
mal three-tier configuration of RUBBoS [40], a representative n-tier application benchmark mod-
eled after Slashdot. The RUBBoS workload is a set of emulated clients sending various HTTP re-
quests (both static and dynamic) generated by a Markov-chain user behavior model for web-facing

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:6 Q. Wang et al.

Fig. 4. Illustration of VM Consolidation setup: SysSteady Tomcat shares the same CPU core with SysBursty

MySQL.

e-commerce applications. The smallest system configuration consists of one Apache HTTP server,
one Tomcat Application Server, and one MySQL database server, with more details in Appendix A.

The first illustrative example of milli-dependency sequences is created by a CPU millibottleneck
created by interferences among consolidated VMs. Sharing infrastructure resources through VM
consolidation is a common practice for cloud computing platforms to reduce operational cost and
gain high return on investment (RoI) [5, 17, 23, 33]. A typical profitable scenario of consolidation is
to co-locate multiple under-utilized VMs on the same physical machine by following certain rules
such as the classic bin-packing algorithm [21]. However, there is potential interference among VMs
when high CPU demand from multiple VMs coincide [37], e.g., in naturally bursty [34] web-facing
applications.

We co-locate two RUBBoS three-tier applications, named SysSteady and SysBursty (Figure 4),
in our VM consolidation experiments. For clarity of analysis, there is only one shared node, with
the SysSteady Tomcat co-located with SysBursty MySQL and they share the same CPU core. Other
servers of each system run on dedicated physical machines. SysSteady serves 7,000 normal RUBBoS
client users while SysBursty serves only 400 client users but with a burst index 100 times higher
(see Reference [35]) than SysSteady. Such a bursty workload is common in web-facing applications
(sometimes referred to as the “Slashdot” effect [1]).

3.2 CPU Millibottleneck Caused by VM Co-location

Figure 5(a) shows episodes of CPU millibottlenecks (ctd0) due to the interference between the two
co-located VMs at 2, 5, 7–9, and 12s. These millibottlenecks cause queuing in SysSteady Tomcat
(ctd1), which leads to even longer queue in Apache (ctd2) due to Cross-tier Queue Amplification, as
shown in Figure 5(b). The Cross-tier Queue Amplification happens, because every queued request
in Tomcat consumes one thread in Tomcat and one connection between Apache and Tomcat. We
note that queuing in Apache happens purely due to the waiting for Tomcat, since none of Apache
resources is saturated.

For millibottlenecks of moderate length, the growth of Apache queues (ctd2) leads to queue
overflow (the dashed line in Figure 5(b) indicates Apache runtime queue limit) and dropped pack-
ets. These dropped TCP packets, being retransmitted after a certain amount of time (3s for the first
retransmission in Redhat kernel 2.6.32), lead to the VLRT requests as shown in Figure 5(c). Fig-
ure 5(b) shows two levels of queue overflow. The first level queue overflow occurs at 2, 5, 10, 15s,
because the queued requests reach to the limit 278 (sum of thread pool size 150 and TCP buffer
size 128). Once queued requests in Apache exceed such a limit, new incoming requests will be
dropped and retransmitted, resulting in long requests. The second-level queue overflow occurs at
about 17s. This happened when all the worker threads in the first process are occupied, and during
the creation of a second Apache process with an additional thread pool of size 150. However, new
incoming requests still get dropped when the second Apache process is in the initiation period.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:7

Fig. 5. Illustration of millibottlenecks in Tomcat causing upstream CTQO in the VM consolidation

experiments.

This is because initiating a new process with a large size thread pool consumes non-trivial CPU
resources and blocks Apache for a short period of time (tens of milliseconds).

Figure 5(b) shows that the Apache queues (ctd2) grow much longer than those in Tomcat (ctd1).
This occurs because of the Cross-tier Queue Amplification as illustrated in Figure 3. At t1 time
marker, Tomcat millibottleneck starts (ctd0). At t2, hundreds or even thousands of requests rush to
Tomcat and fill up the Tomcat queue (ctd1), blocking incoming requests. At t3, Cross-tier Queue
Amplification then causes all types of requests to queue in the upstream Apache (ctd2), including
both the dynamic and static requests. Dynamic requests, regardless of being light and heavy,1 are
indistinguishably queued in FIFO order in Apache, causing longer queues. Since it is common that
a web server serves more static/local requests (e.g., images, HTML, CSS) than dynamic requests,
the queueing effect in Apache can be significantly amplified. This is shown in Figure 6(a), by
the breakdowns of queued requests in SysSteady-Apache during the same 20s timeframe as in
Figure 5(b). All types of requests, including the static “Browse” requests, are indeed queued in
Apache during ctd2.

1A dynamic request being heavier than a light one can be attributed to a heavy request consuming significantly more

system resources than the light one.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:8 Q. Wang et al.

Fig. 6. Categorization of queued requests in SysSteady-Apache during the same timeframe of Figure 5(b).

Three (out of eight) representative request types show that both static and dynamic requests are queued in

Apache during a millibottleneck in Tomcat.

3.3 I/O Millibottleneck Caused by Log Flushing

The second example illustrating the milli-dependency sequences is background monitoring ac-
tivities common in large scale distributed systems. Our experiments use one Apache server, one
Tomcat, and one MySQL (see Figure 15(c)). We add three more CPU cores to the original Tom-
cat VM (now totally four cores) to avoid the CPU bottleneck in Tomcat. This upgrade of Tomcat
allows millibottlenecks to appear in MySQL. Specifically, the monitoring tool collectl [45] mon-
itors (at fine granularity—every 50ms) the utilization of system sources such as CPU, memory,
network, disk I/O, and process runtime state in each server. collectl has a control knob for users
to specify how frequent to flush the accumulated measured data from memory to disk (no dedi-
cated core for disk I/O activities). We set the time interval to 30s, a common choice that reduces
the monitoring interference with the running application.

Figure 7(a) shows millibottlenecks in MySQL (ctd0) in red high peaks at 10, 40, and 70s (30s
intervals). These are due to collectl flushing monitoring data from memory to disk, with I/O wait
for MySQL reaching 100%. These transient CPU I/O waits create millibottlenecks that lead to other
threads blocking for CPU (ctd1). When all of the MySQL threads become blocked, the upstream
server (Tomcat) starts to block threads and see growing queues (ctd2) due to Cross-tier Queue-
amplification, shown in Figure 7(b). The queues in Tomcat, when long enough, cause further Cross-
tier-queue Amplification to Apache (ctd3). Once the queued requests in Apache consume all the
queue slots (threads and TCP buffer), packets are dropped and VLRT requests are created by TCP
retransmission as shown in Figure 7(c).

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:9

Fig. 7. I/O millibottlenecks in MySQL causing upstream CTQO in the log flushing scenario.

4 EVALUATION OF ASYNCHRONOUS INVOCATION IN N-TIER SYSTEMS

4.1 Evaluation Method

The experiments in Section 3 show both the variety and the importance of Cross-tier Queue Over-
flow in the presence of inter-dependent nodes. Since the dependencies created by synchronous
RPC-style request-response are a necessity for upstream CTQO, we proceed to remove these de-
pendencies by replacing the RPC request-response with asynchronous invocation and evaluate the
interactions between CTQO and VLRT requests.

We acknowledge that since Birrell and Nelson’s classic 1984 paper [7], RPC has been widely
used to build distributed systems such as n-tier applications. However, our experimental evidence
shows that system designers and implementers should consider a return to asynchronous com-
munications that preceded RPC when upstream CTQO and long-tail response time become a real
problem. The experiments also reveal some of the underlying complexities of the problem. For
instance, replacing one server in the chain (e.g., Nginx instead of Apache) reduces but does not
eliminate all the long-tail response time problems.

We will use the same three-tier application benchmark of Section 3 as a baseline, but replace
each of the three thread-based RPC-style servers (Apache, Tomcat, and MySQL) one-by-one and
evaluate the performance impact of asynchronous invocation instead of RPC. Figure 8 shows the
three asynchronous servers (Nginx [38], XTomcat [4, 16], and XMySQL) in the final configuration.
More details regarding the asynchronous servers and benchmark application implementation can

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:10 Q. Wang et al.

Fig. 8. Illustration of the asynchronous three-tier system architecture. We use Nginx, XTomcat, and XMySQL

to replace the original thread-based RPC-style Apache, Tomcat, and MySQL, respectively.

be found in the Appendices B and C. For clarity of presentation, we use the term NX to denote the
number of asynchronous servers in a set of experiments.

4.2 NX=1, Replacing Apache with Nginx

Our study in Sections 3.2 and 3.3 shows that Apache causes VLRT requests by dropping packets
because of upstream CTQO, thus, a natural hypothesis is that we may solve the upstream CTQO
problem by replacing just the thread-based RPC-style Apache with an asynchronous web server.
The answer turns out to be partially true. The asynchronous event-based web server such as
Nginx [38] won’t drop packets indeed, however, the problem moves to the downstream tiers; for
example, the synchronous Tomcat and MySQL start to drop packets and the long-tail response
time problems arise again.

We make two changes of the experimental setup compared to that in the previous Section 3.
First, to better control the occurrence of millibottlenecks in our VM consolidation experiments
(Section 3.2), we modified SysBursty workload generator to launch specific request bursts at fixed
intervals. For example, the workload generator launches a burst of 400 ViewStory requests at 15s
intervals, which will trigger CPU millibottlenecks with an approximately 300ms length. Second,
we replace the thread-based RPC-style Apache with the asynchronous Nginx to effectively re-
move the queue limit of MaxSysQDepth(Apache). The concurrent request processing in Nginx is
no longer limited by its thread pool size, but a lightweight queue with size LiteQDepth in Nginx,
where LiteQDepth�MaxSysQDepth(Apache). This change indeed enables Nginx to route all the
requests to the downstream Tomcat, thus shifting the problem downstream. Under the assumption
that the web server is not the bottleneck (which is the case of the RUBBoS benchmark), the down-
stream Tomcat and MySQL potentially encounter millibottlenecks at a moderate utilization level.

The first problem that can arise is due to millibottlenecks in Tomcat. Figure 9 shows the exper-
imental results of millibottlenecks in SysSteady Tomcat (co-located with the MySQL VM of Sys-
Bursty as in Figure 4). Figure 9(a) shows the SysSteady Tomcat and MySQL CPU utilization (we
omit the CPU utilization of Nginx, since it is always less than 40%). We can see several millibottle-
necks in SysSteady Tomcat (at time mark 7, 26, 42, 57, and 72s), due to the co-located MySQL VM
of SysBursty processing a burst of requests.2 The millibottlenecks in Tomcat cause Tomcat queue
to grow as shown in Figure 9(b). Since Nginx is asynchronous, Nginx will route all the requests
it receives (up to LiteQDepth(Nginx)) to the downstream Tomcat, which can hold concurrent re-
quests up to 293 (sum of Tomcat thread pool size 165 and TCP buffer size 128 by default). As the
new coming requests from Nginx overwhelm the queues in downstream Tomcat (in a process we
call downstream CTQO) packets are dropped, and become VLRT requests as shown in Figure 9(c).

The second problem that can arise is originated from millibottlenecks in MySQL. Figure 10
shows the millibottlenecks in MySQL VM of SysSteady, caused by bursts from the co-located

2The sudden drop of MySQL CPU in SysBursty is due to Tomcat not sending requests downstream because of the

millibottleneck.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:11

Fig. 9. NX=1, Nginx-Tomcat-MySQL configuration when millibottlenecks occur in Tomcat. No upstream

CTQO observed in Nginx, but queue overflow happens in Tomcat during the millibottlenecks.

MySQL VM of SysBursty. Figure 10(a) shows the SysSteady MySQL CPU utilization, with mil-
libottlenecks (ctd0) at time marks 8, 26, and 45s. These millibottlenecks cause MySQL to queue
(Figure 10(b)); the queue size of which is up to 50 (equal to DB connection pool size in Tomcat).
When the queued requests exceed MaxSysQDepth(MySQL) in step ctd1, the synchronous Tom-
cat starts to queue the incoming requests (ctd2) due to the upstream CTQO between Tomcat and
MySQL. When the arriving requests (up to LiteQDepth(Nginx)) exceed queue limit of Tomcat,
excess requests will be dropped, leading to VLRT requests because of TCP retransmission (Fig-
ure 10(c)). This process between MySQL and Tomcat forms upstream CTQO, a similar process to
the one we introduced between Apache and Tomcat (see Figure 5(c)).

These experiments show that replacing the thread-based RPC-style Apache with the event-
driven asynchronous Nginx removed the front-most web server tier from the chain of Cross-tier
dependencies. However, new problems arise downstream. First, when Tomcat encounters milli-
bottlenecks, the asynchronous Nginx is able to route excess requests (up to LiteQDepth(Nginx))
to the downstream Tomcat, causing downstream CTQO, since LiteQDepth(Nginx) � MaxSysQ-
Depth(Tomcat). The excess requests (LiteQDepth(Nginx) −MaxSysQDepth(Tomcat)) are dropped,
becoming VLRT requests due to TCP retransmission. Second, when MySQL encounters millibot-
tlenecks, they may cause upstream CTQO between MySQL and Tomcat, in a way analogous to
the millibottlenecks in Tomcat causing upstream CTQO in Apache (Sections 3.2 and 3.3).

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:12 Q. Wang et al.

Fig. 10. NX=1, Nginx-Tomcat-MySQL configuration when millibottlenecks occur in MySQL. Upstream

CTQO observed between MySQL and Tomcat during the millibottleneck periods.

4.3 NX=2, Replacing Tomcat with XTomcat

After we replace Apache with Nginx in the previous section, the following step is to replace the
thread-based RPC-style Tomcat with an event-based asynchronous application server. Without a
popular asynchronous application server, we transform the original thread-based Tomcat to its
asynchronous version called XTomcat. Our focus here is to evaluate the impact of XTomcat on
CTQO, so we put the transformation of Tomcat into XTomcat in Appendix B.

We want to know whether using both asynchronous Nginx and XTomcat in a simple three-
tier system will address the CTQO problem and avoid VLRT requests. The answer turns out to be
partially true again. Our experimental results show the upstream and downstream CTQO between
Nginx and XTomcat are indeed fixed. However, downstream CTQO continues to appear in MySQL.

The first case of downstream CTQO appears when MySQL encounters millibottlenecks, created
by co-locating MySQL VM of SysSteady with the MySQL VM of SysBursty. Figure 11(a) shows the
SysSteady MySQL and SysBurst MySQL CPU utilization during a 60s time period. The millibot-
tlenecks in SysSteady MySQL appear at time mark 5, 22, 38, and 56s, and make MySQL to queue
(Figure 11(b)). Since MySQL queue limit is 228 (sum of thread pool size 100 and TCP buffer size
128), the excess requests from Nginx and XTomcat to the downstream MySQL could cause requests
to drop, generating VLRT requests as shown in Figure 11(c).

The second case of downstream CTQO appears when XTomcat encounters millibottlenecks,
created by co-locating XTomcat VM of SysSteady with MySQL VM of SysBursty (Figure 12). The

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:13

Fig. 11. NX=2, Nginx-XTomcat-MySQL configuration when millibottlenecks occur in MySQL. No upstream

CTQO observed in XTomcat and Nginx. However, downstream CTQO observed when queued requests in

MySQL exceeds MaxSysQDepth (MySQL).

CPU utilization of XTomcat and MySQL (Nginx omitted due to low utilization) are shown in Fig-
ure 12(a). We can see millibottlenecks in XTomcat make XTomcat to queue at time marks 8, 24,
and 39s, shown in Figure 12(b). When a millibottleneck in XTomcat ends, all the queued requests
in XTomcat are quickly routed to the downstream MySQL (Figure 12(b)). Since XTomcat is able to
store up to LiteQDepth(XTomcat) requests, if LiteQDepth(XTomcat) > MaxSysQDepth(MySQL),
then we have downstream CTQO with the excess packets dropped, creating VLRT requests.

The downstream CTQO between XTomcat and MySQL can happen in realistic workloads. Sup-
pose XTomcat has a millibottleneck that lasts 0.4s, and the average request arrival rate for the
application is 1,000 req/s. XTomcat will store 400 requests during the millibottleneck, since Lite-
QDepth(XTomcat) is large (e.g., 65,535 occupied TCP port numbers). In this case, 400 requests will
be quickly pushed to MySQL, causing downstream CTQO and dropped requests when the number
of inflowing requests is larger than MaxSysQDepth(MySQL), which is 228 (Figure 12(c)).

4.4 NX=3, Replacing MySQL with XMySQL

We further evaluate CTQO after we replace the last synchronous server in the system—MySQL
with XMySQL, an asynchronous event-based database server. We want to know whether replacing
all the component servers in the system with their asynchronous versions (e.g., Nginx, XTomcat,
and XMySQL) will address CTQO and avoid VLRT requests. Our experimental results show that

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:14 Q. Wang et al.

Fig. 12. NX=2, Nginx-XTomcat-MySQL configuration when millibottlenecks occur in XTomcat. Downstream

CTQO observed when batched requests are flushed from XTomcat to MySQL, causing queue overflow in

MySQL and dropped packets.

the CTQO (both upstream and downstream) can be prevented once all the servers in the three-tier
system become asynchronous, thus avoid VLRT requests regardless of millibottlenecks occurring
in any server. XMySQL simulates an asynchronous MySQL by adopting the InnoDB storage engine
of MySQL, which supports a lightweight queue to store the waiting queries when the thread pool
is fully utilized. Concretely, we configured 8 threads in the InnoDB storage engine to process
active queries, and an additional lightweight queue with a size of 2,000 for waiting queries. Such
a configuration is large enough for LiteQDepth(XMySQL).

We evaluate the asynchronous three-tier system using the same CPU millibottlenecks scenar-
ios as we described in the VM co-location experiments in Section 3.2 and Figure 4. The thread-
based RPC-style component servers (Apache-Tomcat-MySQL) in the original system SysSteady
are replaced with their asynchronous versions (Nginx-XTomcat-XMySQL). We also changed the
RUBBoS benchmark application to adopt asynchronous invocation for inter-tier communication.

First, we evaluate the case when millibottlenecks occur in XTomcat. Figure 13(a) shows
SysSteady XTomcat encountered CPU millibottlenecks at time marks 4, 13, and 35s, causing
XTomcat to queue (Figure 13(b)). This figure also shows that the XTomcat queue and Nginx queue
almost overlap with each other, suggestion no upstream CTQO between the two tiers. In addition,
Nginx, XTomcat, and XMySQL have very large LiteQDepth (e.g., 65,535 and 2,000, respectively),

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:15

Fig. 13. NX=3, Nginx-XTomcat-XMySQL configuration when millibottlenecks occur in XTomcat. No up-

stream or downstream CTQO observed in the system.

thus avoiding downstream CTQO. Since there is no CTQO either upstream or downstream, we
see no dropped requests, thus no VLRT requests.

Second, we evaluate the case when millibottlenecks occur in XMySQL. We run the same Log
Flushing experiments (I/O millibottlenecks) as described in Section 3.3. We only change the pre-
vious synchronous version of the three-tier system to its asynchronous counterpart. Figure 14(a)
shows the CPU I/O wait of each tier. This figure shows XMySQL encounters I/O millibottlenecks
at every 30s (time marks 13, 43, and 73s). Figure 14(b) shows the runtime queue of XMySQL,
XTomcat and Nginx almost overlap, indicating no upstream CTQO between them. Also, large
LiteQDepth(Nginx), LiteQDepth(XTomcat), and LiteQDepth(XMySQL) prevent the downstream
CTQO, thus there are no dropped packets.

4.5 Discussion of Alternative Designs

A straightforward fix for the thread-based RPC-style servers is to increase the MaxSysQDepth,
for example, by increasing the worker thread pool size. This simple fix might mitigate or prevent
the CTQO problems described in Section 3. However, increasing the thread pool size to thou-
sands causes many other performance issues as discussed before [9, 26, 41, 58, 59]. Specifically,
over-allocated threads cause overhead coming from various system layers such as LLC miss, high
context switches, and scheduling overhead. Previous work [54, 59] has shown that significant mul-
tithreading overhead can be introduced even with tens to a few hundred threads, depending on the

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:16 Q. Wang et al.

Fig. 14. NX=3, Nginx-XTomcat-XMySQL configuration when millibottlenecks occur in XMySQL. No up-

stream or downstream CTQO is observed in the system during the I/O millibottlenecks.

type of servers. In addition, over-allocated threads in Java-based servers also lead to non-linearly
increased JVM garbage collection time resulting from high Memory footprint used for request
processing [58].

Another straightforward fix is to increase the default TCP buffer size (128 in Linux kernel 2.6.32),
the second component of MaxSysQDepth. However, it is also a non-trivial task to choose a reason-
able size for TCP buffer size, since the workload for web application is very bursty by nature [8].
On the other hand, increasing network buffer sizes has been shown by the networking community
to cause side effects such as bufferbloat [15], which causes long delivery latency.

For completeness, we also ran experiments on a configuration where a synchronous server is
upstream from an asynchronous server (Apache-XTomcat-MySQL). The experiments confirm the
intuitive reasoning that by itself the XTomcat is unable to prevent completely either the upstream
CTQO or the downstream CTQO. First, when millibottlenecks occur in XTomcat, upstream CTQO
causes Apache to drop packets in a situation similar to Apache-Tomcat outlined in Section 3.2.
Second, after the millibottleneck in XTomcat ends, a burst of requests released by XTomcat causes
downstream CTQO in MySQL, which is the same case described in Section 4.3. For carefully cho-
sen configurations, we can observe the simultaneous occurrence of both upstream CTQO and
downstream CTQO (graphs omitted, since they are similar to cases already discussed).

In practice, there is a management option of keeping the server utilization very low, e.g., the
18% reported by Gartner [44]. This is an expensive way to avoid long-tail response time problems.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:17

Table 1. Summary of CTQO Observed

General case Upstream CTQO Downstream CTQO

Sync⇒ Sync

Apache from Tomcat (Section 3.2)
Misaligned configuration settings

(Section 4.5)
Apache and Tomcat from MySQL (Section 3.3)

Tomcat from MySQL (Section 4.2)

Async⇒ Sync No (Sections 4.3 and 4.4)
NginX⇒ Tomcat (Section 4.2)

XTomcat⇒MySQL (Section 4.3)

Async⇒ Async No (Sections 4.3 and 4.4) No (Section 4.4)

Sync⇒ Async Apache from XTomcat (Section 4.5) No (Section 4.5)

Our study shows that downstream CTQO may occur at low utilization levels if the configuration
settings are misaligned for two servers connected by RPC-style communications and sufficiently
high workload bursts happen. Consider a scale-out facility (either automated or manual) to keep
the utilization low when the load increases in a data center. Consider the 1/1/1 configuration in
our experiments and suppose a workload change (to heavy application server load) causes the
scale-out facility to add two Tomcat servers, increasing the MaxSysQDepth(Tomcat) from 200 to
600. Since the database tier is not the bottleneck, MaxSysQDepth(MySQL) remains unchanged, for
example, at 200. The resulting configuration could cause downstream CTQO when a sudden burst
of requests is successfully handled by the 3 Tomcat servers, sending many requests to MySQL that
may exceed MaxSysQDepth(MySQL) and lead to dropped packets.

Our experimental study of the 1-1-1 configuration is successful in exposing both upstream
and downstream CTQO in all four combinations of synchronous with asynchronous servers
(Section 4.6 shows a summary). The previous management option suggests that our study only
opened the door to many interesting possibilities in the design, implementation, and operations
of distributed applications in data centers, since the successful scale-out of one tier (Tomcat) may
lead to millibottlenecks and CTQO in other tiers that have low utilization.

4.6 Summary of Evaluation

We summarize the results from the detailed evaluation from Section 4.2 to Section 4.5 in Table 1. In
the left column, we classify the n-tier system components into four categories according to their
communications style and handling of messages: sync→sync, async→sync, async→async, and
sync→async. By sync, we mean a server with synchronous (blocking) message API, where each
message is handled by a thread from request to response. In contrast, async servers have an event-
based asynchronous message API, where messages are accepted and inserted into a lightweight
message queue for further processing by other threads.

For each category, the middle column contains the examples of upstream CTQO if applicable,
and the right column contains the examples of downstream CTQO if applicable. The table shows
that async upstream servers can remove upstream CTQO, and async downstream servers can re-
move downstream CTQO. Consequently, an n-tier pipeline consisting entirely of async servers
can avoid both upstream and downstream CTQO problems.

In Table 2, we summarize the causes for upstream and downstream CTQO found in our ex-
periments. The upstream CTQO is started by a millibottleneck in the downstream server (ctd0),
which causes the queues in an upstream synchronous server (ctd1) to exceed its MaxSysQDepth.
The downstream CTQO is started by an upstream server releasing bursts of requests and causing
a downstream synchronous server to exceed its MaxSysQDepth. Perhaps somewhat ironically, an
asynchronous upstream server is more capable of processing a larger number of requests within

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:18 Q. Wang et al.

Table 2. Summary on Causes of CTQO

Upstream CTQO Downstream CTQO

Causes
Millibottlenecks in downstream server cause
upstream sync server to drop packets when

MaxSysQDepth overflows

Bursts of requests from upstream server cause
downstream sync server to exceed its

processing capacity + MaxSysQDepth overflow

Examples

Apache from Tomcat (Section 3.2)
Apache and Tomcat from MySQL (Section 3.3)

Tomcat from MySQL (Section 4.2)
Apache from XTomcat (Section 4.5)

NginX⇒ Tomcat (Section 4.2, during
millibottleneck in Tomcat)

XTomcat⇒MySQL (Section 4.3, after
millibottleneck in XTomcat)

a short window, and thus more likely to cause downstream CTQO in a synchronous server (cases
studied in Sections 4.2 and 4.3).

5 RELATED WORK

In latency sensitive web applications (e.g., 99th or even 99.9th percentile latency) [2, 3, 12, 22,
27, 29, 46, 60, 61], the long-tail response time problem has received considerable attention re-
cently. The previous work can be divided into three major categories: (1) identification of sources of
long-tail response time problem and their solution by improving resource allocation (scheduling),
(2) solutions to long-tail response time without identifying explicitly the source, and (3) evaluation
of asynchronous event-based systems, compared to synchronous versions.

In the first category (identify specific sources of long-tail response time, often with solutions tar-
geted for those sources), representative examples of research include: Cake [53] (reactive feedback-
control scheduler for different workloads), Chase et al. [30] (adaption lag of feedback controller
for dynamic scaling of storage), Domino [28] (prioritize using the longest-wait-time-first (LWTF)
policy), DeepDive [39] (short-term interference of co-located VMs, identifiable by hardware per-
formance counters), Li et al. [29] (several sources in hardware, OS, and application level in web
servers), Berger et al. [6] (dynamical reallocation of cache resource based on different latency-
aware requests), PriorityMeister [63] (tail latency reduction through combining priority schedul-
ing and multi-stage per-workload rate limit), Terei et al. [47] and Wang et al. [57] (Java garbage
collection), Wang et al. [55] (control system lag in dynamic voltage and frequency scaling), and
Bobtail [61] (co-scheduling VMs with CPU bound tasks as one root cause). Our study follows the
same philosophy of identifying a class of problems and then evaluate solutions. At the same time,
we differ from, and complement, the previous work in this category by focusing on distributed
system phenomena (CTQO) and solutions (asynchronous n-tier system architecture).

In the second category (proposed solutions to long-tail response time problem without iden-
tifying explicitly the source), representative examples of research include Dean et al. [12] (use
hedged requests and tied requests over replicated services to bypass the long-tail response time
problem in Google’s interactive applications), C3 [46] (apply adaptive replica selection scheme
to address performance fluctuations across Cassandra distributed database servers), and Jalaparti
et al. [20] (present a holistic framework, Kwiken, which considers the latency distribution in
each stage, the cost of applying individual techniques and the workflow structure to minimize
end-to-end latency). These approaches typically exploit server replicas to bypass the requests
that take unexpected long time to respond, without identifying explicitly the source of the delay.
Our work focuses on a class of long-tail response time problems that result from queue overflow
and dropped requests. Although replicated servers can solve more problems than asynchronous
servers, the latter has the potential to lower the costs in data centers without sacrificing the
quality of service for latency-sensitive applications.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:19

In the third category (evaluation of asynchronous systems), we found many studies of single
web servers adopting event-based asynchronous architectures [10, 18, 26, 41, 51, 52, 62]. These
research efforts focus mainly on reducing the multithreading overhead of thread-based design,
instead of solving a distributed system problem. Second, streaming processing systems [48, 49]
mainly adopt asynchronous messaging for inter-node communication, however, these systems
are not interactive, e.g., call/response by nature as in web-facing systems, so their application
domain is orthogonal to our research problem. In contrast, our study focuses on the advantages and
disadvantages of synchronous versus asynchronous communications in distributed n-tier systems.

6 CONCLUSION

Despite the progress made in recent years on the various methods to mitigate long-tail response
time problems in web-facing applications [2, 3, 12, 22, 27, 29, 46, 61], they remain a serious threat
that may be contributing to the continuing low utilization of servers in data centers [27, 32, 44].
These previous research efforts address mainly two classes of long-tail response time problems
caused by either uneven workloads (some requests are intrinsic heavy) such as web search, or
resource contention in single nodes. In this article, we focus on a third class that arises from
Cross-tier Queue Overflow (CTQO), a distributed system phenomenon resulting from the RPC-
style synchronous inter-node communication.

Our study shows that CTQO happens in a classic n-tier configuration (Apache, Tomcat, and
MySQL) with the following causal chain of events: (1) occurrence of millibottlenecks with tens to
hundreds of duration at moderate average utilization, (2) CTQO causing a synchronous server to
exceed its MaxSysQDepth (worker thread pool size plus the TCP buffer size), (3) excess packets are
dropped, (4) retransmission of dropped packets, (5) long-tail response time due to response times
of multiple seconds for the retransmitted packets. CTQO is a broad problem, since the initiating
millibottleneck can arise from resources in any system layer (e.g., CPU, memory, network and
disk I/O), as shown by previous work [56, 57]. To address the CTQO challenge, we replace the
synchronous servers (Apache, Tomcat, MySQL) one-by-one with their asynchronous counterparts:
Nginx, and asynchronous versions of Tomcat and MySQL. The experiments evaluated in detail all
viable combinations between synchronous and asynchronous servers.

We found two main CTQO scenarios. The first one is upstream CTQO when dropping requests
occurs in an upstream server due to the millibottlenecks in a downstream server pushing more
requests to queue upstream. The second one is downstream CTQO when dropping requests occurs
in a downstream server, because the millibottlenecks in its upstream server make accumulated
queued requests suddenly flood to downstream. Once we replace all thread-based synchronous
servers with their asynchronous counterparts, both upstream & downstream CTQO can be avoided
even if the system runs at moderate utilization levels. Our research suggests that by applying
asynchronous inter-tier communications for the entire n-tier system, we may effectively reduce
the non-trivial long-tail response time problems resulting from CTQO.

APPENDICES

A EXPERIMENTAL SETUP

We use a standard n-tier benchmark RUBBoS as a representative interactive online applications in
our experiments. RUBBoS benchmark application is modeled after the popular tech news website
Slashdot [1]. A typical configuration for the RUBBoS benchmark application is a three-tier archi-
tecture (a Web server tier, an application server tier, and a database tier). More tiers (e.g., Cache,
load balancer) can be added based on the application need. Each tier communicates with each other
using the classic RPC-style synchronous request-response. The benchmark application supports

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:20 Q. Wang et al.

Fig. 15. Experimental setup.

24 different web interactions such as ViewStory and StoriesOfTheday. The workload generator of
this benchmark supports two workload modes: browse-only CPU intensive and read/write mixes.
We use the former mode in this article. The workload generator launches a certain number of
threads, each of which simulates the behavior of a normal user when interacting with the bench-
mark application. Thus, the workload intensity can be controlled by specifying the number of
threads in the workload generator. Such as workload generator design is similar to that of many
other n-tier benchmarks such as RUBiS and Cloudstone.

We conduct our experiments on our virtualized cluster environment. Figure 15 illustrates the
hardware and software configurations, and a simple three-tier configuration adopted in our exper-
iments. Every server is hosted by one virtual machine (VM). Each VM is deployed on a dedicated
physical machine unless explicitly specified to conduct VM co-location experiments.

B CONNECTORS FOR ASYNCHRONOUS INTER-TIER COMMUNICATION

A key unit for inter-tier communication in an n-tier system is the connector. Each server uses a
connector to communicate with other servers in the system (see Figure 8). The main activities
of a connector are to manage incoming and outgoing network connections, parse and route the
incoming requests to the application layer (business logic), and write response back to clients
through established connections. Both the synchronous and the asynchronous connectors share
similar functionality in high level, but they have very different mechanisms to interact with the
OS and the application layers.

Thread-based servers mainly use synchronous connectors with RPC-style request-response for
inter-node communication. When a synchronous connector accepts a request, it will dispatch the
request to a dedicated worker thread for handling until the finish of the request. Thus, each concur-
rent request consumes one worker thread of the server. The concurrent request processing is real-
ized by the operating system transparently switching among worker threads (thus context switch
occurs). Although widely used in production internet servers, synchronous connectors bring two

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:21

Fig. 16. Interaction between an asynchronous connector with the application and the OS layers.

problems when handling high concurrent requests. The first one is the multithreading overhead,
which has been extensively studied before [9, 26, 41, 54, 58, 59]. The second but more interesting
one is the Cross-tier Queue Overflow as discussed in this article.

An asynchronous connector follows the event-driven design. Previous research efforts have
shown that the asynchronous event-driven architecture could be a superior alternative to the tra-
ditional thread-based design by mitigating the multithreading overhead [11, 26, 41, 59, 62]. How-
ever, it is challenging to build high-performance asynchronous event-driven servers due to the
obscured non-sequential control flow rooted in the event-driven programming model. An asyn-
chronous connector manages a bunch of connections and interacts with both the application and
the OS layer through one or a few threads handling various events (see Figure 16). Concretely, an
asynchronous connector handles events received from both the application and the OS layers by
looping over two phases. The first phase is responsible for events monitoring, determining which
connections have pending events (read or write) that need to be processed. The asynchronous
connector is able to achieve this by exploiting the event notification mechanisms supported by the
underlying operating system (e.g., epoll for Linux).

The second phase is responsible for event processing. In this phase, a scheduling thread pulls
out those connections with pending events and iterates over each connection. During the iterating
process, the scheduling thread calls the appropriate event handler (based on the context informa-
tion) to handle each event. We note that theoretically only one thread is needed to loop over the
two phases. In reality, multiple threads can be allocated to each phase in case of transient disk I/O
blocking or efficiently utilizing a multi-core CPU [41].

The asynchronous connector design suggests the decoupling of component servers in the re-
quest processing chain of an n-tier system. One or a few processing threads of each server loops
continuously over the two phases in each asynchronous connector, processing various types of
local events, and are independent of the queuing status of servers in other tiers. In this case, the
queue of a downstream server will not be pushed back to the upstream tiers, thus break the channel
of Cross-tier Queue Overflow.

In our experiments, we directly use or implement a few asynchronous servers, shown in Fig-
ure 8. For example, we use a popular asynchronous web server Nginx [38]. The asynchronous
XTomcat [4] is based on the Tomcat version 7 (the latest version at the time), which supports an
asynchronous connector to handle upstream communication. We modified an open source asyn-
chronous JDBC driver [16] for XTomcat to support asynchronous invocation with the downstream
database.

For the database tier, XMySQL simulates an asynchronous MySQL by adopting the InnoDB stor-
age engine of MySQL, which supports a lightweight queue to store the waiting queries. Specifically,
the InnoDB allows MySQL to limit the number of active threads for query processing; additional
queries that exceed the thread limit will be stored into a FIFO queue to avoid high concurrency

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

36:22 Q. Wang et al.

overhead. In our experiments, we set the active thread limit in MySQL to be 8 while setting the
limit of accepted queries to a large number (2,000) to avoid dropped queries.

C ASYNCHRONOUS BENCHMARK APPLICATION CONVERSION

Most existing n-tier benchmark applications (e.g., RUBiS, Cloudstone, TCP-W) are implemented
using the traditional synchronous programming model. With this programming model, each ac-
cepted request is processed in a straightforward sequential fashion by a dedicated server thread.
Specifically, the application level business logic use synchronous RPC request-response to com-
municate with other servers; the processing thread will block until each synchronous call returns
(e.g., returned ResultSet from a database query). Thus even if a server adopts asynchronous con-
nectors, the original benchmark application with sequential control flow is not compatible with
the asynchronous I/O abstractions (i.e., read, write, and listen) provided by the asynchronous con-
nectors. To make an asynchronous benchmark application, the original synchronous benchmark
application needs to be re-implemented using the event-driven programming model and make it
use the asynchronous connectors to conduct inter-tier communication.

In the event-driven programming model, the processing of each request is divided into multi-
ple disjoint stages, the execution of each stage is triggered by an event. Figure 17 illustrates the
process of converting a simple RPC-style synchronous Java servlet to its event-driven version.
The logic of the synchronous Java servlet is an abstraction of the sequential execution of a set of
ordinary synchronous database queries, SyncDBQuery1, m, SyncDBQueryN , inside a Tomcat ap-
plication server. The servlet will process the returned result of each synchronous database query
before moving the next synchronous database query. Such a simple servlet can be systematically
transformed into the functionally equivalent asynchronous version as shown in the right part of
Figure 17. This figure shows that once we see a synchronous database query (e.g., SyncDBQuery1,
SyncDBQuery2), the original sequential logic needs to split into two functions. The first function
will execute the original database query in a non-blocking mode; the second function is referred
as the call-back function, which will be triggered only when the previous database query returns
results (thus network I/O events).

We note that Figure 17 is just a simple example of converting the basic sequential flow to its asyn-
chronous version. Schneider [50] introduced some transformation rules that help convert more
complicated control flows such as for-loop and switch statement from the synchronous version
into their asynchronous version. In addition, these conversion rules are not only applicable to
stateless programs, but they can also be applied to stateful programs given that a global context
object associated with each client request can be passed to an asynchronous call. Using Schneider’s

Fig. 17. Simple RPC transformed into a set of asynchronous calls.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

Mitigating Tail Response Time of n-Tier Applications 36:23

transformation rules, we have successfully transformed the RUBBoS benchmark application into
its asynchronous version, which enables the large-scale performance evaluation of the asynchro-
nous architecture of n-tier applications.

REFERENCES

[1] Stephen Adler. 1999. The Slashdot effect: An analysis of three Internet publications. Linux Gazette 38 (1999), 2.

[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta

Sengupta, and Murari Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer-

ence. 63–74.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, and Masato Yasuda. 2012. Less is

more: Trading a little bandwidth for ultra-low latency in the data center. In Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’12). 253–266.

[4] Apache Software Foundation. 2019. Java Non Blocking Connector (NIO). Retrieved from https://tomcat.apache.org/

tomcat-7.0-doc/config/http.html.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. 2003. Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP’03). 164–177.

[6] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-Balter. 2018. RobinHood: Tail

latency aware caching–dynamic reallocation from cache-rich to cache-poor. In Proceedings of the 13th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’18). 195–212.

[7] Andrew D. Birrell and Bruce Jay Nelson. 1984. Implementing remote procedure calls. ACM Trans. Comput. Syst. 2, 1

(Feb. 1984), 39–59. DOI:https://doi.org/10.1145/2080.357392

[8] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A. Patterson. 2010. Characterizing,

modeling, and generating workload spikes for stateful services. In Proceedings of the 1st ACM Symposium on Cloud

Computing. ACM, 241–252.

[9] Hui Chen, Qingyang Wang, Balaji Palanisamy, and Pengcheng Xiong. 2017. DCM: Dynamic concurrency manage-

ment for scaling n-tier applications in cloud. In Proceedings of the IEEE 37th International Conference on Distributed

Computing Systems (ICDCS’17). IEEE, 2097–2104.

[10] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazires, and Robert Morris. 2002. Event-driven program-

ming for robust software. In Proceedings of the 10th ACM SIGOPS European Workshop. 186–189.

[11] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node. fz: Fuzzing the server-side event-driven archi-

tecture. In Proceedings of the T12th European Conference on Computer Systems. ACM, 145–160.

[12] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.

[13] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s law for tail latency. Commun. ACM 61, 8 (2018), 65–72.

[14] Qi Fan and Qingyang Wang. 2015. Performance comparison of web servers with different architectures: A case study

using high concurrency workload. In Proceedings of the 3rd IEEE Workshop on Hot Topics in Web Systems and Tech-

nologies (HotWeb’15). IEEE.

[15] Jim Gettys and Kathleen Nichols. 2012. Bufferbloat: Dark buffers in the internet. Commun. ACM 55, 1 (2012), 57–65.

[16] Google Code Archive. 2009. Non-Blocking (asynchronous) MySQL Connector for Java. Retrieved from https://code.

google.com/archive/p/async-mysql-connector/.

[17] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. 2011. Cuanta: Quantifying effects of shared

on-chip resource interference for consolidated virtual machines. In Proceedings of the 2nd ACM Symposium on Cloud

Computing (SoCC’11). 22.

[18] Ashif S. Harji, Peter A. Buhr, and Tim Brecht. 2012. Comparing high-performance multi-core web-server architec-

tures. In Proceedings of the 5th Annual International Systems and Storage Conference. 1.

[19] Instagram Engineering. 2018. Open-sourcing a 10x reduction in Apache Cassandra tail latency. Retrieved from https:

//instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589.

[20] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin, and Chenyu Yan. 2013. Speeding

up distributed request-response workflows. In ACM SIGCOMM Computer Communication Review, vol. 43. ACM, 219–

230.

[21] Deepal Jayasinghe, Calton Pu, Tamar Eilam, Malgorzata Steinder, Ian Whally, and Ed Snible. 2011. Improving perfor-

mance and availability of services hosted on iaas clouds with structural constraint-aware virtual machine placement.

In Proceedings of the IEEE International Conference on Services Computing (SCC’11). IEEE, 72–79.

[22] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott Rixner, and Alan L. Cox. 2016. TPC: Target-driven

parallelism combining prediction and correction to reduce tail latency in interactive services. In Proceedings of the 21st

International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 129–141.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://doi.org/10.1145/2080.357392
https://code.google.com/archive/p/async-mysql-connector/
https://code.google.com/archive/p/async-mysql-connector/
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589

36:24 Q. Wang et al.

[23] Yasuhiko Kanemasa, Qingyang Wang, Jack Li, Masazumi Matsubara, and Calton Pu. 2013. Revisiting performance

interference among consolidated n-tier applications: Sharing is better than isolation. In Proceedings of the 10th IEEE

International Conference on Services Computing (SCC’13). 136–143.

[24] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat. 2012. Chronos: Predictable

low latency for data center applications. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC’12).

9:1–9:14.

[25] Ron Kohavi and Roger Longbotham. 2007. Online experiments: Lessons learned. Computer 40, 9 (2007), 103–105.

[26] Maxwell N. Krohn, Eddie Kohler, and M. Frans Kaashoek. 2007. Events can make sense. In Proceedings of the USENIX

Annual Technical Conference. 87–100.

[27] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling high server utilization and sub-millisecond quality-of-

service. In Proceedings of the 9th European Conference on Computer Systems (EuroSys’14). 4:1–4:14.

[28] Ding Li, James Mickens, Suman Nath, and Lenin Ravindranath. 2015. Domino: Understanding wide-area, asynchro-

nous event causality in web applications. In Proceedings of the 6th ACM Symposium on Cloud Computing (SoCC’15).

ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/2806777.2806940

[29] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales of the tail: Hardware, OS, and

application-level sources of tail latency. In Proceedings of the ACM Symposium on Cloud Computing (SOCC’14). New

York, NY.

[30] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. 2010. Automated control for elastic storage. In Proceedings of the

IEEE International Conference on Autonomic Computing (ICAC’10).

[31] LinkedIn Engineering. 2015. Who moved my 99th percentile latency. Retrieved from https://engineering.linkedin.

com/performance/who-moved-my-99th-percentile-latency.

[32] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2016. Improving

resource efficiency at scale with heracles. ACM Trans. Comput. Syst. 34 (2016), 6:1–6:33. Retrieved from http://dl.acm.

org/citation.cfm?id=2882783.

[33] Simon Malkowski, Yasuhiko Kanemasa, Hanwei Chen, Masao Yamamoto, Qingyang Wang, Deepal Jayasinghe, Calton

Pu, and Motoyuki Kawaba. 2012. Challenges and opportunities in consolidation at high resource utilization: Non-

monotonic response time variations in n-tier applications. In Proceedings of the IEEE 5th International Conference on

Cloud Computing (CLOUD’12). IEEE, 162–169.

[34] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2008. Burstiness in multi-tier applications:

Symptoms, causes, and new models. In Proceedings of the ACM/IFIP/USENIX 9th International Middleware Conference

(Middleware’08). 265–286.

[35] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2009. Injecting realistic burstiness to a tradi-

tional client-server benchmark. In Proceedings of the 6th International Conference on Autonomic computing (ICAC’09).

149–158.

[36] Jeffrey C. Mogul. 2006. Emergent (mis) behavior vs. complex software systems. ACM SIGOPS Operat. Syst. Rev. 40, 4

(2006), 293–304.

[37] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: Managing performance interference effects

for qos-aware clouds. In Proceedings of the 5th European Conference on Computer Systems. ACM, 237–250.

[38] NGINX. 2017. nginx. Retrieved from http://nginx.org/.

[39] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo Bianchini. 2013. DeepDive: Trans-

parently identifying and managing performance interference in virtualized environments. In Proceedings of the 2013

USENIX Annual Technical Conference. 219–230.

[40] ObjectWeb Consortium. 2005. RUBBoS: Bulletin board benchmark. Retrieved from http://jmob.ow2.org/rubbos.html.

[41] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and David R. Cheriton. 2007. Comparing the per-

formance of web server architectures. In ACM SIGOPS Operating Systems Review, vol. 41. 231–243.

[42] Junhee Park, Qingyang Wang, Jack Li, Chien-An Lai, Tao Zhu, and Calton Pu. 2016. Performance interference of

memory thrashing in virtualized cloud environments: A study of consolidated n-tier applications. In Proceedings of

the IEEE 9th International Conference on Cloud Computing (CLOUD’16). IEEE, 276–283.

[43] Vern Paxson, Mark Allman, Jerry Chu, and Matt Sargent. 2011. Computing TCP’s Retransmission Timer. Technical

Report.

[44] Bill Snyder. 2010. Server virtualization has stalled, despite the hype. Retrieved from https://www.infoworld.com/

article/2624771/server-virtualization-has-stalled--despite-the-hype.html.

[45] SOURCEFORGE. 2018. Collectl. Retrieved from http://collectl.sourceforge.net/.

[46] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3: Cutting tail latency in cloud data stores

via adaptive replica selection. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Imple-

mentation (NSDI’15). 513–527. Retrieved from http://dl.acm.org/citation.cfm?id=2789770.2789806.

[47] David Terei and Amit Levy. 2015. Blade: A data center garbage collector. arXiv preprint arXiv:1504.02578.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://doi.org/10.1145/2806777.2806940
https://engineering.linkedin.com/performance/who-moved-my-99th-percentile-latency
https://engineering.linkedin.com/performance/who-moved-my-99th-percentile-latency
http://dl.acm.org/citation.cfm?id$=$2882783.
http://dl.acm.org/citation.cfm?id$=$2882783.
http://nginx.org/
http://jmob.ow2.org/rubbos.html
https://www.infoworld.com/article/2624771/server-virtualization-has-stalled--despite-the-hype.html
https://www.infoworld.com/article/2624771/server-virtualization-has-stalled--despite-the-hype.html
http://collectl.sourceforge.net/
http://dl.acm.org/citation.cfm?id$=$2789770.2789806.

Mitigating Tail Response Time of n-Tier Applications 36:25

[48] The Apache Software Foundation. 2018. Apache Flink. Retrieved from https://flink.apache.org/.

[49] The Apache Software Foundation. 2018. Apache Storm. Retrieved from http://storm.apache.org.

[50] Thibaud Lopez Schneider. 2008. Writing Effective Asynchronous XmlHttpRequests. Retrieved from https://www.

thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf.

[51] Robert von Behren, Jeremy Condit, and Eric Brewer. 2003. Why events are a bad idea (for high-concurrency servers).

In Proceedings of the 9th Workshop on Hot Topics in Operating Systems (HotOS’03). 19–24.

[52] Rob Von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. 2003. Capriccio: Scalable threads

for internet services. In ACM SIGOPS Operating Systems Review, vol. 37. 268–281.

[53] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion Stoica. 2012. Cake: Enabling high-level

SLOs on shared storage systems. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC’12). ACM,

New York, NY. DOI:https://doi.org/10.1145/2391229.2391243

[54] Qingyang Wang, Hui Chen, Shungeng Zhang, Liting Hu, and Balaji Palanisamy. 2019. Integrating concurrency control

in n-tier application scaling management in the cloud. IEEE Trans. Parallel Distrib. Syst. 30, 4 (2019), 855–869.

[55] Qingyang Wang, Yasuhiko Kanemasa, Chien-An Li, Jack Lai, Masazumi Matsubara, and Calton Pu. 2013. Impact of

DVFS on n-tier application performance. In Proceedings of ACM Conference on Timely Results in Operating Systems

(TRIOS’13). 33–42.

[56] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu, Masazumi Matsubara, Motoyuki

Kawaba, and Calton Pu. 2013. Detecting transient bottlenecks in n-tier applications through fine-grained analysis. In

Proceedings of the 33rd IEEE International Conference on Distributed Computing Systems (ICDCS’13). 31–40.

[57] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-An Cho, Yuji Nomura, and Calton Pu. 2014.

Lightning in the cloud: A study of very short bottlenecks on n-tier web application performance. In Proceedings of

USENIX Conference on Timely Results in Operating Systems (TRIOS’14).

[58] Qingyang Wang, Simon Malkowski, Yasuhiko Kanemasa, Deepal Jayasinghe, Pengcheng Xiong, Calton Pu, Motoyuki

Kawaba, and Lilian Harada. 2011. The impact of soft resource allocation on n-tier application scalability. In Proceedings

of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS’11). 1034–1045.

[59] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An architecture for well-conditioned, scalable internet ser-

vices. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01). 230–243. DOI:https://

doi.org/10.1145/502034.502057

[60] Yunjing Xu, Michael Bailey, Brian Noble, and Farnam Jahanian. 2013. Small is better: Avoiding latency traps in vir-

tualized data centers. In Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC’13).

[61] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. 2013. Bobtail: Avoiding long tails in the cloud. In

Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13). 329–342.

[62] Shungeng Zhang, Qingyang Wang, and Yasuhiko Kanemas. 2018. Improving asynchronous invocation performance

in client-server systems. In Proceedings of the IEEE 38th International Conference on Distributed Computing Systems

(ICDCS’18). IEEE, 907–917.

[63] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-Balter, and Gregory R. Ganger. 2014. PriorityMeis-

ter: Tail latency QoS for shared networked storage. In Proceedings of the ACM Symposium on Cloud Computing

(SOCC’14). ACM, New York, NY. DOI:https://doi.org/10.1145/2670979.2671008

Received February 2019; revised April 2019; accepted June 2019

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://flink.apache.org/
http://storm.apache.org
https://www.thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf
https://www.thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf
https://doi.org/10.1145/2391229.2391243
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/2670979.2671008

