
37

YeAH-TCP: Yet Another Highspeed TCP
Andrea Baiocchi, Angelo P. Castellani and Francesco Vacirca

INFOCOM Department - University of Roma ”Sapienza”, Via Eudossiana 18, 00184 Roma, Italy
e-mail:{baiocchi,castellani,vacirca }@infocom.uniroma1.it

Abstract— In recent years, several new TCP congestion control
algorithms have been proposed to improve TCP performance
over very fast, long-distance networks. High bandwidth delay
products require more aggressive window adaptation rules,yet
maintaining the ability of controlling router buffer conge stion.
We define a relatively simple experimental scenario to compare
most current high speed TCP proposals under many metrics:
efficiency, internal fairness, friendliness to Reno, induced network
stress, robustness to random losses. Based on the gained insight,
we define Yet Another High-speed TCP, as a heuristic attempt
to strike a balance among different opposite requirements.

Index Terms— High Bandwidth-Delay Product Network, TCP.

I. INTRODUCTION

TCP has been defined and refined during the 80’s. Its
strength and amazing flexibility stems from its longevity and
capacity to accomplish its task even while the network evolved
from a 64 kbps backbone to a multi-Gbps core network, with
extensive use of wideband wireless access, to say the least.
Achieved performance are not optimal, and concern has arisen
in the scientific community as to the re-definition of TCP
for use in large Bandwidth-Delay Product (BDP) networks,
as provided by optical network core over geographic distance
even for terrestrial networks1. Recent works devoted to this
topic are addressed in Section II.

The aim of this work is to report an extensive experimental
measurement of most current high speed TCP proposals,
evaluated under a number of performance metrics. We consider
efficiency in bandwidth exploitation, average packet delay,
internal and RTT fairness, friendliness to Reno, robustness to
random losses2. We set up a single bottleneck test-bed, that can
include cross traffic and adjustable RTT and random packet
loss; this is a trade-off between controllability and significance
of the experimental results. We do not claim ours are definitive
results, yet they are consistent and lead to sufficient insight
that we felt worth defining a new heuristic for high speed TCP,
which we named as Yet Another High-speed (YeAH) TCP.

The paper is organized as follows: Section II reviews
recent literature on new proposals for TCP in high BDP
networks and gives the motivations for our work. In Section
III, the description of YeAH-TCP algorithm is provided. The
experimental testbed is described in Section IV; Section V
reports measurement results. The main conclusions are drawn
in Section VI.

II. RELATED WORKS

In the recent literature, different strategies have been ex-
plored to address the problem of TCP in high BDP networks;

This work has been partially supported by the Italian Research Ministry
under the PRIN FAMOUS grant.

1A well known instance of large BDP links is satellite.
2This is not so unrealistic, e.g. current optical packet backbones.

these can be classified into four different categories: i)
Loss-based; ii) Delay-based; iii) Mixed loss-delay-based; iv)
Explicit congestion notification.

Congestion control algorithms that consider packet loss as
an implicit indication of congestion by the network belong to
the first category. All proposals in this category (STCP [1],
HSTCP [2], H-TCP [3], BIC [4] and CUBIC [5]) modify the
increase and decrease rule of Reno congestion control to be
more aggressive when they work in high BDP networks.

Other proposals (second category) consider delay as an
indication for network congestion. A very well known delay-
based congestion control algorithm for high BDP network is
FAST TCP [6]; it employs an alternative congestion control
algorithm using both queuing delays and packet losses as
indications of congestion in the network. Under normal
working conditions, the congestion window is updated every
RTT and depends on the estimation of the average RTT.

In the third category, we find some approaches based on
a mix between delay-based and loss-based congestion indica-
tions. TCP Africa [7] is a dual state algorithm; the congestion
window is updated differently in the two operation modes.
Specifically the algorithm switches between the “slow” mode
state in which the congestion window is updated according
to Reno algorithm, and the “fast” mode state in which the
congestion window is updated according to HSTCP increase
rule. Switching between states is governed by the number of
queued packets in the bottleneck buffer, inferred through a
delay-based approach. As the authors highlight, TCP Africais
aggressive when the pipe is not full and it behaves like Reno
when the full link utilization is achieved.

Another approach similar to TCP Africa is the one proposed
in [8]. Compound TCP borrows from Africa TCP the idea to
be aggressive only when the capacity of the bottleneck link
is underutilized, by using a different approach: the algorithm
keeps two different variables, the standard congestion window
cwnd and the delay windowdwnd; the congestion window
is updated according to the Reno scheme and the number of
outstanding packets is the sum of the congestion window and
the delay window. The purpose of the delay window is to
enable Compound TCP to be more aggressive when the delay
variation is low. This behavior is achieved by enlarging and
shrinking the delay window according to the round trip time
estimation.

In the last category, there are those solutions (e.g XCP [9])
that require explicit signal from the network elements to infer
the congestion of the network. In the remainder of this work,
algorithms belonging to this category are not considered since
their development requires the cooperation of router and hence
a modification of today Internet.

Besides, we do not consider cross-layer solutions involving
e.g. AQM; we assume congestion control relies only on end-
to-end mechanisms.

As shown in this section, several proposals exist to over-
come the problem of TCP in high BDP network. However,

38

recent discussions on the end2end mailing list [10] and
several experimental and simulative works ([11], [12] [13])
reveal that there is no agreement on the best congestion
control paradigm for high BDP networks. An algorithm, whose
performance are optimal in a particular scenario, may perform
unsatisfactorily in other scenarios. Moreover, differenttestbeds
lead to different results due to minimal differences in the
algorithm implementation or in the network scenario design.
Besides it is not clear, which are the metrics that should be
considered to evaluate a new congestion control algorithm.A
big effort in this direction has been carried out by IRTF in
[14] to standardize the methods and the metrics for congestion
control evaluation.

In our opinion, the new proposals for TCP in high BDP
networks are not evaluated correctly since it is often forgotten
that one of the main characteristic should be the capability
of the algorithm to avoid congestion in the network and not
only the capability to achieve the full link utilization. I.e.,
an important issue that is not payed enough consideration
in most performance evaluation papers is if the proposed
algorithm is optimal from a congestion controller point of
view. If we consider a single STCP flow in a single bottleneck
scenario, it is able to achieve the full link utilization in
few round trip times, since its increasing rule is aggressive.
This leads to multiple losses, whenever the bottleneck link
buffer has been filled up, that can be rapidly recovered by
an efficient loss recovery procedure, such as SACK TCP.
In opposition, standard TCP is slow in reaching the steady
state behavior in large BDP network since it increases its
congestion window by one packet per RTT, but from the point
of view of a loss-based congestion controller it is optimal,
since it probes the network with one packet more per round
trip time, which is the minimum increment rate adapted to the
delay of the feedback signal. Nowadays, the large diffusionof
TCP congestion control preserves network health for legacy
Reno traffic and new-generation application with real-timeor
interactive requirements. Instead the lack of congestion control
design in new transport protocol can cause network instability
and non-negligible degradations.

In this context, the purpose of our work is twofold. On one
hand, we proposeyet another congestion control paradigm that
is able to fully exploit the capacity of high BDP links without
loosing its congestion control capabilities. On the other hand,
results obtained withyet another experimental testbed, can
be used by other researchers to gain a deeper insight in the
evaluation of other existing proposals.

In the experimental evaluation section, the number of
congestion controllers has been creamed off to make the
obtained results easily readable; we compare CUBIC, HSTCP,
H-TCP, Africa, Compound TCP and our proposal, namely
YeAH-TCP. FAST TCP has not been considered since the
algorithm code is not publicly available; STCP has not been
considered since it has been widely shown that it is highly
RTT unfair (see for example [11]). Since CUBIC TCP is the
new candidate algorithm for Linux TCP default setting and it
can be considered the evolution of BIC, BIC results are not
shown.

III. Y EAH: ALGORITHM DESIGN

In the design of YeAH-TCP we considered various goals:
1) Network capacity should be exploited efficiently. This

is the most obvious goal, which can be achieved by
modifying the congestion window update rules; as

described later, YeAH TCP can exploit anyone of the
increment rules of other proposals (e.g. STCP, H-TCP,
etc.).

2) The stress induced to the network should be less or
equal than that induced by Reno TCP. Most of the
high speed TCPs induce congestion events frequently
at the bottleneck router and the number of packet
drops in a single congestion event are significantly
higher as compared to standard Reno congestion control,
degrading the performance achieved by other traffic
sharing the path. Further, queuing delays and delay jitter
are also adversely affected.

3) TCP friendliness with Reno traffic. A “politically”
acceptable algorithm should be able to compete fairly
with Reno flows, avoiding starvation of competing flows,
and simultaneously exploiting the link capacity.

4) The algorithm should be internally and RTT fair.
5) Performance should not be substantially impaired by non

congestion related (random) packet loss events; random
packet loss cannot be ruled out even in case of high
speed optical backbones. Reasonable values of this loss
depend on the technological context, but we verify that
even a loss rate in the order of10−7 can give rise to
sensitive performance degradation.

6) Small link buffers should not prevent high performance.
It is not feasible to design buffer size equal to the
bandwidth-delay product in high BDP links as required
by standard Reno congestion control [15]. This goal can
be achieved by adopting a decrease policy in case of
packet loss similar to the Westwood algorithm [16].

YeAH-TCP attempts to address all the aforementioned
issues. It envisages two different modus operandi: “Fast” and
“Slow” modes, like Africa TCP. During the “Fast” mode,
YeAH-TCP increments the congestion window according to an
aggressive rule (we chose STCP rule, since it is very simple to
implement). In the “Slow” mode, it acts as Reno TCP.

The state is decided according to the estimated number
of packets in the bottleneck queue. LetRTTbase be the
minimum RTT measured by the sender (i.e. an estimate of the
propagation delay) andRTTmin the minimum RTT estimated
in the current data window ofcwnd packets. The current
estimated queuing delay isRTTqueue = RTTmin −RTTbase.
From RTTqueue is possible to infer the number of packets
enqueued by the flow as:

Q = RTTqueue · G = RTTqueue ·

(

cwnd

RTTmin

)

(1)

where G is the goodput. We can also evaluate the ratio
between the queuing RTT and the propagation delayL =
RTTqueue/RTTbase, that indicates the network congestion
level. Note thatRTTmin is updated once per window of data.

If Q < Qmax andL < 1/ϕ, the algorithm is in the “Fast”
mode, otherwise it is in the “Slow” mode.Qmax and ϕ are
two tunable parameters;Qmax is the maximum number of
packets a single flow is allowed to keep into the buffers.1/ϕ
is the maximum level of buffer congestion with respect to
BDP. During the “Slow” mode, a precautionary decongestion
algorithm is implemented3: wheneverQ > Qmax, the conges-
tion window is diminished byQ andssthresh set tocwnd/2.
SinceRTTmin is computed once per RTT, the decongestion
granularity is one RTT.

3As it will be explained in the following, the decongestion isemployed only
when the YeAH-TCP is not competing with Reno flows.

39

Considering the case that a single YeAH-TCP competes for
the bottleneck link,Q is an estimate of the excess amount
of packets with respect to the minimumcwnd required to
exploit the available bandwidth. This amount of packets
can be removed from the actual congestion window without
degrading the goodput. When the number of competing flows
increases, every flow attempts to fill the buffer by the same
number of packets (at maximumQmax) independently of the
perceived RTT, achieving the internal RTT fairness. Moreover
the precautionary decongestion prevents the bottleneck queue
from building up too much, reducing queuing delays and
diminishing packet losses due to buffer overflow. As shown in
[17], the precautionary decongestion is optimal only when the
flows that implement it do not compete with “greedy” sources,
such as Reno TCP. When competing with “greedy” flows, the
precautionary decongestion makes the conservative flow lose
capacity, since it releases bandwidth to the greedy sources.

To avoid unfair competition with legacy flows, YeAH-TCP
implements a mechanism to detect if it is competing with
“greedy” sources. Consider the case of competition with Reno
flows, that do not implement the queue decongestion; when
Q > Qmax YeAH-TCP attempts to remove packets from the
queue, the queuing delay increases on because Reno flows are
“greedily” filling up the buffer. In this case, YeAH-TCP will
stay hardly ever in “Fast” mode state and frequently in “Slow”
mode. On the contrary, with non greedy competing flows
(e.g. flows implementing the precautionary decongestion),the
YeAH algorithm will cause a state change from “Fast” to
“Slow” whenever buffer content builds up aboveQmax and
back as soon as the precautionary decongestion becomes ef-
fective. This different behavior makes it possible to distinguish
between the two different competition circumstances, counting
the number of RTTs that the algorithm is in the two states. To
this aim, two counting variables are defined:countreno and
countfast. countfast represents the number of RTTs in “Fast”
mode.countreno is an estimate of the value of the congestion
windows of competing Reno flows. The decongestion takes
place only during the “Slow” mode and ifcwnd > countreno

to avoid that the congestion window decreases below the
estimated value of the Reno flows congestion window. At the
start-upcountreno is initialized to cwnd/2, it is incremented
by one every RTT in ”Slow” mode and, when a packet
loss is detectedcountreno is halved. The variable is reset
to the currentcwnd/2 whenevercountfast is greater than
a threshold, indicating that the flow is competing with other
non-greedy flows. At the same timecountfast is reset to 0.
Figure 1 depicts two examples of the evolution of YeAH-TCP

0 100 200 300 400 500 600
0

500

1000

Time (s)

cwnd YeAH−1
cwnd YeAH−2
Queue

0 100 200 300 400 500 600
0

500

1000

Time (s)

cwnd YeAH−1
cwnd Reno−1
Queue

Fig. 1. YeAH-TCP congestion window evolution.

congestion window when competing with a YeAH-TCP flow
(upper plot) and when competing with a Reno flow (lower
plot). In the first case, when the second YeAH-TCP flow starts,
the two flows converge steeply towards the same congestion
window. In the second case (lower plot), when the Reno TCP
flow starts, the YeAH-TCP decrements the congestion window
till the moment it gets aware to compete with a “greedy”
flow, i.e. until cwnd becomes less thancountreno. From this
moment on, the two flows share the bandwidth in the Reno
way.

Last issue is what happens in case of packet losses. When a
loss is detected by three duplicate ACKs, the current estimate
of the bottleneck queueQ, can be exploited to find the
value of packets that should be removed from the congestion
window to empty the bottleneck buffer, yet leaving the pipe
full. This rule is similar in principle to the one used by
Westwood TCP [16]. This rule permits to obtain the full link
utilization after a loss, for every value of the bottleneck buffer
size and in case of losses independent of the congestion of
the network. In case of three duplicate ACKs, when YeAH-
TCP does not compete with Reno flows4, cwnd is decreased
by min{max{cwnd/8, Q}, cwnd/2} segments. If YeAH-TCP
competes with Reno flows, the congestion window is halved.

IV. EXPERIMENTAL TESTBED

To investigate the effectiveness of the new congestion
control proposal, a testbed has been designed and imple-
mented. Its primary scope was to recreate a realistic high-speed
long-distance network environment to test congestion control
algorithms. The testbed development platform is based upon
the GNU/Linux operating system, with three PCs running a
modified version of the 2.6.16.2 kernel release. The physical
network topology of the connections is based on 1000BaseTX
physical connections, between the hosts. The logical topology
of the testbed is depicted in Figure 2. Host 1 and host 2

Host 3

B

C
Router R

Host 1

Host 2

RTT1

RTT2

Fig. 2. Testbed logical topology

are connected to router R with two full duplex 1Gbps links;
the link between router R and host 3 is the bottleneck link
and its capacityC can vary between 10kbps and 500Mbps;
in the experimental results section (Section V)C has been
fixed to 500 Mbps and the data packet size fixed to 1500
bytes. The RTT between host 3 and host 1 isRTT1, whereas
the RTT between host 3 and host 2 isRTT2. Both RTTs
can varies between 12ms and 480ms independently. The
router buffer B is always configured as a fraction of the
BDP=C·min(RTT1, RTT2); where not specified,ssthresh is
unlimited and the limited slow start algorithm [18] is enabled.
The advertised window is set to high values so not to limit
the value of the TCP sender congestion window. A cross web
traffic has been generated, by letting host 3 be a web server and
a specific fourth PC (different from host 1, 2 and 3 in Figure
2) simulates a population of clients. Web traffic is generated

4This fact is recognized by comparing the number of consecutive RTTs
spent in “Slow” mode up to the current time with a threshold.

40

according to the SURGE model [19]; the average web traffic
load is 4 Mbps. Where not specified, every experiment has
a fixed duration of 600s and each measurement point is the
average of at least three experiments.

It is worth to pinpoint that to evaluate the congestion
control algorithm it is required that the bottleneck link isnot
directly connected to the sender. In fact, whenever the outgoing
network interface has been filled by the sender, the congestion
window stops to increase (disabling the congestion control)
and the sender transmits at full rate.

The Linux TCP/IP internetworking stack has been modified
to make it fully RFC compliant; Linux implementation, in fact,
does not always respect RFCs as reported in [20]. Moreover,
Africa TCP and Compound TCP have been implemented in
the Linux kernel to test their performance. A patch for Linux
kernel is publicly available at [21].

V. EXPERIMENTAL RESULTS

A. Round-trip time effect on congestion control

First, we analyze the effect of different round trip times on
different congestion control mechanisms. In this scenario, the
round trip timesRTT1 andRTT2 are equal and vary between
15ms and 480ms and the buffer size is 100% of BDP.

As far as regards the link utilization, not depicted here, all
TCP flavors (including Reno TCP) are able to fully exploit the
available bandwidth when RTT is lower or equal than 120 ms.
For larger RTTs, the limited slow start algorithm is not ableto
adaptcwnd to the large BDP during the experiment duration
(a detailed analysis of the impact of the experiment duration
on the achieved performance is reported in Section V-E).

 0

 0.2

 0.4

 0.6

 0.8

 1

 480 240 120 60 30 15

A
ve

ra
ge

 q
ue

ue
 [%

 b
uf

fe
r

si
ze

]

RTT [ms]

Bottleneck (B=100% BDP / No Ploss / C=500Mbps)

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

Fig. 3. Normalized queue length varying the round-trip time.

In Figure 3, the average queue length normalized to the
buffer size is depicted vs. the RTT value; queue length values
are obtained by sampling the bottleneck buffer at 100 Hz.
Note that the buffer size, that normalizes the average queue
length, increases proportionally to the abscissa value. Aswe
can see, Reno puts a relevant load on the bottleneck buffer in
the range of RTTs it is able to achieve the full link utilization
(RTT between 15ms and 120ms). Africa and Compound load
is comparable to Reno. As far as regards HSTCP and CUBIC,
their average queue length is significantly larger than Renoas
long as RTT is in the range 15-120 ms. H-TCP queue level
is almost constant as RTT increases since, on packet losses,it
decrements the congestion window according to an estimate
of the number of enqueued packets. YeAH TCP induced
load is stably lower than other algorithms and especially it
offers always low load while fully utilizing the link; this
characteristic is achieved by means of the precautionary queue
decongestion algorithm, that decreases the congestion window
when the estimated number of enqueued packets is higher
than Qmax. Queue length standard deviation has also been

evaluated. It turns out that it has the same qualitative behavior
as depicted in Figure 3 and quite close quantitative values
(the ratio between standard deviation and average queue length
ranges between 1 and 2).

RTT = 15ms RTT = 60ms RTT = 240ms

Reno 0.0000057686 0.0000050669 0.0000009400
YeAH - - -

Compound 0.0000040134 0.0000010827 0.0000007531
H-TCP 0.0000375099 0.0001419530 0.0003352330
Africa 0.0000026651 0.0000018414 0.0000011650
CUBIC 0.0000261158 0.0000184990 0.0000296627
HS-TCP 0.0000606129 0.0000293257 0.0000041152

TABLE I
BUFFER OVERFLOW PACKET LOSS PROBABILITY.

In Table I the packet loss probability induced in the
bottleneck buffer is reported for different values of RTT. A
dash sign means that no lost packet has been found in the
experiments (for 600 s duration, at full link speed, about
25 million packets are sent). The more congestion control is
aggressive, the larger are packet losses due to congestion.

B. Link loss probability impact on performance

In this section, the effect of non-congestion-related packet
losses on congestion control performance is analyzed. As
reported in [2], a packet loss rate below10−10 is unrealistic
for current networks and for our experiments we adopt packet
loss rate suggested therein. Scenario parameters are the same
of previous section, except of random packet loss events that
are generated with probabilityploss=5 · 10−7. Figure 4 depicts

 0

 0.2

 0.4

 0.6

 0.8

 1

 480 240 120 60 30 15

E
ffi

ci
en

cy

RTT [ms]

Bottleneck (B=100% BDP / Ploss=.5e-6 / C=500Mbps)

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

Fig. 4. Link utilization varying the round-trip time withploss=5 · 10
−7.

the link utilization of different congestion control mechanisms,
varying RTT1 and RTT2. It can be observed that all the
algorithms are able to exploit the whole link capacity for BDP
lower than few thousands of packets; at higher BDP values,
ploss has a big impact on their efficiency. Hybrid approaches
(Africa and Compound) degradation is more relevant since
they halvecwnd in case of packet loss detection, whereas
other algorithms use lower decreasing factor (e.g., 0.2 for
CUBIC TCP). As far as regards Reno TCP, it experiences
high goodput degradation when BDP increases since it is not
able to increase its congestion window so as to achieve the full
link capacity because packet loss and the experiment duration
is too short. YeAH-TCP is able to fully exploit the network
capacity, irrespective of the BDP and of the independent packet
losses, mostly due to its mild windows shrinking rule on
packet loss detection (one eighth of the congestion window
if the buffer contents is low enough). In turn, this limited
congestion window decrease is enabled by the preventive
decongestion, which manages to keep the bottleneck buffer

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-08 1e-07 1e-06 1e-05 1e-04 0.001

E
ffi

ci
en

cy

Loss Probability

RTT 200ms / Bottleneck (B=100% BDP / C=500Mbps)

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

Fig. 5. Link utilization varying link loss probability.

lightly loaded. Figure 5 depicts the link utilization when
RTT1=RTT2=200ms,B is 100% of the BDP (8333 packets)
and ploss varies between10−8 and 10−4. All congestion
control algorithms are highly impacted asploss grows up.
Reno TCP obtains the worst results. The performance of all
algorithms degrade because of the congestion control loss-
based component that reduces the congestion window when a
packet loss is detected. YeAH-TCP is able to sustain higher
link loss rate against other algorithms because it does not
reducecwnd according to a constant factor, but depending
on the estimated BDP. However, whenploss is very high, also
YeAH-TCP performance degrades substantially.

C. Bottleneck buffer size effect on congestion control

As a third issue, we analyze the performance of differ-
ent TCP algorithms by varying the bottleneck buffer size
with respect to BDP. In this scenarioploss = 0 and
RTT1=RTT2=80ms (BDP=3333 packets). Figure 6 plots the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 0.5 0.25 0.125

A
ve

ra
ge

 q
ue

ue
 [%

 b
uf

fe
r

si
ze

]

Bottleneck buffer [% BDP]

RTT 80ms / Bottleneck (No Ploss / C=500Mbps)

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.25 0.125

E
ffi

ci
en

cy

Bottleneck buffer [% BDP]

RTT 80ms / Bottleneck (No Ploss / C=500Mbps)

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

(b)

Fig. 6. Normalized average queue length (a) and link utilization (b) varying
the bottleneck buffer size.

normalized average queue length at the bottleneck buffer
(a) and the link utilization (b) as a function of the buffer
size. When B is lower than BDP, Reno TCP is not able to
fully exploit the available bandwidth independently of the
buffer size. All the loss based algorithms experience a serious
goodput degradation when operating with low buffer sizes.

YeAH-TCP performance are not affected by lower buffer sizes
due to its fixed buffer requirement. Africa and Compound
achieve good results thanks to their delay-based component
that dim the number of induced losses in the bottleneck buffer.
As far as regards average queue length, for all congestion
control algorithms, except YeAH-TCP, the normalized average
queue length increases as the bottleneck buffer size increases,
since all those algorithms employ a loss-based component for
thecwnd setting. YeAH-TCP queue utilization decreases when
the bottleneck buffer size increases, since YeAH-TCP buffer
occupancy oscillates between 0 andQmax and the average
number of enqueued packets is almost constant.

D. Fairness issues

The internal and RTT fairness has been evaluated by com-
puting the Jain’s fairness index withB=BDP, RTT1=25ms,
and varying the ratio betweenRTT2 and RTT1. Results are

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1 1.5 2 2.5 3 3.5 4

Ja
in

’s
 F

ai
rn

es
s

In
de

x

RTT Ratio

RTT1=25ms / Bottleneck (B=100% BDP / C=500Mbps)

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

Fig. 7. Jain’s index varying round-trip time ratio

depicted in Figure 7. When the RTT ratio is 1 (internal fairness
evaluation), all algorithms are fair, except CUBIC that is not
perfectly fair. When the RTT ratio increases (RTT fairness
evaluation), all algorithms, except H-TCP and YeAH-TCP, are
RTT unfair; this was a known limit of Reno, inherited by
new proposals. As far as regards H-TCP, the RTT fairness
is achieved by adopting a time-dependant increasing rule
together with a time-dependent decreasing rule; the reduction
is proportional to the bottleneck router buffer size normalized
to the BDP of the flow. YeAH TCP is RTT fair, because every
flow attempts to keep in the bottleneck buffer a fixed number
of packets independently of RTT thus every flow attempts to
share the bottleneck buffer fairly.

The friendliness of highspeed congestion control with Reno
flows has been analyzed. We measure the “Fair-to-Reno” ratio
as the ratio of the aggregated goodput ofn Reno flows
competing against a Reno flow, to the aggregated goodput
of n Reno flows competing against the selected algorithm.
Whenn is 1 the “Fair-to-Reno” ratio of loss-based algorithms
is included between 5 and 7, indicating that the performance
of Reno traffic is highly affected by highspeed flows; when
n increases the ratio tends to 1, since the aggressiveness
of the Reno aggregate is comparable with highspeed flows.
As far as hybrid approaches, Africa, Compound and YeAH-
TCP, they are Reno-friendly independently of the number
of competing flows, since their “fast component” is disabled
when competing with Reno flows and their behavior is similar
to a Reno one. It is worth to emphasize that in the selected
scenario, the bottleneck capacity is always fully exploited.

E. Effect of experiment duration

All measurements reported so far refer to experiments
over 600 s, with initialssthresh = ∞ and limited slow

42

start algorithm enabled. Next we investigate on the effect of
experiment duration. To this end we fix the basic RTT value to
480 ms, bottleneck buffer is equal to the BDP (20000 packets)
and the link is loss-free. Figure 8 shows the behavior of the
link utilization (efficiency) of the considered TCP algorithms
as a function of the experiment duration, ranging from 100
s up to 1800 s. We set the initialssthresh=2 packets, so
as to immediately jump into the congestion avoidance phase
soon after connection start up. So, the picture essentially
compares the ability of the different algorithms to reap thelink
capacity and their aggressiveness. Experiments with a lossy
link (ploss = 5 · 10−7) yield essentially same results. When
limited slow start comes into play (see Figure 8(a)), by setting
ssthresh = ∞, and again we consider non lossy links, all
algorithms achieve exactly the same efficiency5. The common
efficiency values ramp from 0.2 at 100 s up to slightly less
than 0.9 for 1800 s, with a concave curve. When introducing
non congestion related packet losses in the bottleneck link,
this uniform behavior of the different algorithms breaks down
completely, since packet loss stops the slow start procedure.
The obtained behavior is quite close to the one seen when
ssthresh is set to 2 packets, since with a random packet loss
probability of the order of10−7, it is expected that a packet
loss occurs within about 200 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

E
ffi

ci
en

cy

Experiment Duration [s]

RTT 480ms / Bottleneck (B=100% BDP / No Ploss) / ssthresh=Inf

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

E
ffi

ci
en

cy

Experiment Duration [s]

RTT 480ms / Bottleneck (B=100% BDP / No Ploss) / ssthresh=2 pkts

Reno
YeAH

Compound
H-TCP
Africa

CUBIC
HS-TCP

(b)

Fig. 8. Efficiency varying the experiment duration (initialsshthresh=∞)

From an experiment assessment point of view, Figure 8(a)
points out that the experiment duration has a major impact
on the quantitative outcome of the obtained efficiency, not on
the comparison among different algorithms. We do not expect
new effects to be highlighted by changing the experiment
duration, except that the shorter it is, the more weight slow
start has, which is the same for all different TCP versions. As
Figure 8(b) shows, experiment duration has a major impact on
different TCP versions performance when slow start is turned
off.

5For experiment duration larger than 1200 s, H-TCP turns out to lose
somewhat with respect to all others, due to its high aggressiveness hence
large number of congestion losses.

VI. CONCLUSION

We have shown a comparison of many high speed TCP
proposals in a simple, parametric large BDP networking
testbed, along with a new yet significant proposal, so called
YeAH-TCP. Experimental results show that, when BDP grows
up, all the aggressive loss-based approaches, like HSTCP, H-
TCP, CUBIC, experience growing queuing delays and TCP
Reno unfriendliness, besides they are not able to fully exploit
the link bandwidth when the packet loss probability is not
negligible. Hybrid approaches, such as Africa and Compound,
have better properties yet they fail to get high goodput
on lossy links, still inducing a relevant network stress at
the bottleneck. As regards YeAH-TCP, it is able to exploit
efficiently the available bandwidth, without inducing stress to
the network elements. It is internally and RTT fair, TCP Reno
friendly and reacts correctly to packet losses independentof
congestion. Further work is required to verify the performance
of our proposal in different network scenarios and to formalize
analytically some heuristics utilized of the design.

REFERENCES

[1] Tom Kelly, “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks,” in proc. of PFLDnet 2003, Feb. 2003, Switzerland.

[2] Sally Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC
3649, Experimental, December 2003.

[3] R.N. Shorten, D.J. Leith, “H-TCP: TCP for high-speed andlong-distance
networks” in proc. of PFLDnet, Argonne, 2004.

[4] L. Xu, K. Harfoush, I. Rhee, “Binary Increase CongestionControl for
Fast, Long Distance Networks,” in proc. of INFOCOM 2004, Hong
Kong, China, Mar. 2004.

[5] I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” in proc. of PFLDnet 2005, February 2005, Lyon, France.

[6] C. Jin, D. X. Wei and S. H. Low, “FAST TCP: motivation, architecture,
algorithms, performance,” in proc. of INFOCOM 2004, Hong Kong,
China, Mar. 2004.

[7] R. King, R. Baraniuk, R. Riedi, “TCP Africa: An Adaptive and Fair
Rapid Increase Rule for Scalable TCP,” in proc. of IEEE INFOCOM
2005, Miami, USA, Mar. 2005

[8] K. Tan, J. Song, Q. Zhang, M. Sridharan, “A Compound TCP Approach
for High-speed and Long Distance Networks,” in proc. of IEEE
INFOCOM 2006, Barcelona, Spain, Apr. 2006.

[9] D. Katabi, M. Handley, C. Rohrs, “Congestion Control forHigh
Bandwidth-Delay Product Networks,” in proc. of ACM SIGCOMM
2002, Pittsburgh, USA, Aug. 2002.

[10] end2end-interest – discussion of end-2-end research and design princi-
ples http://www.postel.org/mailman/listinfo/end2end-interest

[11] S. Mascolo, F. Vacirca, “The effect of reverse traffic onthe performance
of new TCP congestion control algorithms for gigabit networks,” in proc.
of PFLDnet 2006, Nara, Japan, Feb. 2006.

[12] Yee at al., “Evaluating the Performance of TCP Stacks for High-Speed
Networks,” to appear on IEEE Transactions on Networking.

[13] S. Ha, Y. Kim, L. Le, I. Rhee, L. Xu, “A Step toward Realistic
Performance Evaluation of High-Speed TCP Variants,” in proc. of
PFLDnet 2006, Nara, Japan, Feb. 2006.

[14] Sally Floyd, IRTF INTERNET-DRAFT, “Metrics for the Evaluation of
Congestion Control Mechanisms,” 7 August 2006.

[15] Villamizar C., Song C., “High Performance TCP in ANSNET”, ACM
CCR, vol. 24, no. 5, pp. 45-60, Oct. 1994.

[16] S. Mascolo at al. ”TCP Westwood: End-to-End Bandwidth Estimation
for Efficient Transport over Wired and Wireless Networks,“ proc. of
ACM Mobicom, Rome, Italy, July 2001.

[17] L. Brakmo, L. Peterson, “TCP Vegas: End to End Congestion Avoidance
on a Global Internet,” IEEE Journal on Selected Areas in Communica-
tion, vol. 13, no.8 , pp. 1465–1480, Oct. 1995.

[18] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Win-
dows,” IETF RFC 3742, March 2004.

[19] P. Barford and M. Crovella, “Generating Representative Web Workloads
for Network and Server Performance Evaluation,” proc. of ACM
SIGMETRICS Conference, Madison, USA, 1998.

[20] P. Sarolahti, A. Kuznetsov, “Congestion Control in Linux TCP,” in proc.
of USENIX’02, Jun. 2002.

[21] http://infocom.uniroma1.it/˜ vacirca/yeah

